K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

24 tháng 8 2017

Chọn A

Do B, I, K thẳng hàng, trong DABN kẻ MF//BI, FÎAN

=>F là trung điểm của AI. Suy ra BI/BK =4/3

NV
23 tháng 1

À, tưởng dài mà thực ra cũng dễ thôi, vì toàn điểm đặc biệt cả.

Gọi O là tâm đáy \(\Rightarrow I\) là giao AN và SO

\(\Rightarrow I\) là trọng tâm SAC \(\Rightarrow\dfrac{SI}{SO}=\dfrac{2}{3}\)

Gọi E là giao điểm CM và BD, trong mp (SCM) nối MN cắt SE tại J

E là trọng tâm ABC \(\Rightarrow\dfrac{BE}{BO}=\dfrac{2}{3}\)

Menelaus tam giác BOI:

\(\dfrac{BE}{EO}.\dfrac{OS}{SI}.\dfrac{IJ}{JB}=1\Rightarrow2.\dfrac{3}{2}.\dfrac{IJ}{JB}=1\Rightarrow JB=3IJ\)

\(\Rightarrow IB-IJ=3IJ\Rightarrow\dfrac{IB}{IJ}=4\)

NV
23 tháng 1

loading...

17 tháng 11 2023

a: Gọi O là giao điểm của AC và BD

Chọn mp(SAC) có chứa AN

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi I là giao điểm của SO với AN

=>I là giao điểm của AN với mp(SBD)

Chọn mp(AMN) có chứa MN

\(B\in AM\subset\left(AMN\right)\)

\(B\in BD\subset\left(SBD\right)\)

Do đó: \(B\in\left(AMN\right)\cap\left(SBD\right)\)

mà \(I\in\left(AMN\right)\cap\left(SBD\right)\)

nên (AMN) giao (SBD)=BI

Gọi K là giao điểm của BI với MN

=>K là giao điểm của MN với mp(SBD)

b: K là giao điểm của BI với MN

=>B,I,K thẳng hàng

d: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC và O là trung điểm của BD

Xét ΔSAC có

O,N lần lượt là trung điểm của CA,CS

=>ON là đường trung bình

=>ON//SA và ON=SA/2

Xét ΔINO và ΔIAS có

\(\widehat{INO}=\widehat{IAS}\)

\(\widehat{NIO}=\widehat{AIS}\)

Do đó: ΔINO đồng dạng với ΔIAS

=>\(\dfrac{IN}{IA}=\dfrac{NO}{AS}=\dfrac{1}{2}\)

a: \(N\in SC\subset\left(SCD\right)\)

\(N\in\left(ABN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(ABN\right)\)

Xét (SCD) và (ABN) có

\(N\in\left(SCD\right)\cap\left(ABN\right)\)

CD//AB

Do đó: (SCD) giao (ABN)=xy, xy đi qua N và xy//AB//CD

c: Chọn mp(SAC) có chứa AN

Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AN với SO

=>K là giao điểm của AN với mp(SBD)

20 tháng 7 2019

Đáp án A

Gọi   O = A C ∩ B D ,    O ' = C M ∩ B D

Xét  có S, J, O’ lần lượt thuộc 3 cạnh và thẳng hàng.

⇒ S O S I . J I J B . O ' B O ' O = 1 ⇔ 3 2 . J I J B .2 = 1 ⇔ 3 J I = J B

⇒ I B I J = 4

21 tháng 10 2017

10 tháng 12 2019

Trong mặt phẳng (SAC) : AF ∩S O = I là trọng tâm tam giác SBD ⇒ IA/IF=2

Đáp án B

5 tháng 12 2019

Trong mặt phẳng (ABCD) : BD ∩ EC = K

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Trong mặt phẳng (SEC) : EF ∩ SK = J. Áp dụng định lí Me-nê-la-uýt vào tam giác EFC ta được: EJ/JF = 1

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B

17 tháng 6 2018

Chứng minh B, J, I thẳng hàng. Áp dụng định lí Mê-nê-la-uýt vào tam giác IAB ta được IJ/JB = 1/4.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C