Khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a.SA=SB=SC=a, Cạnh SD thay đổi. Thể tích lớn nhất của khối chóp S.ABCD là:
A. a 3 4
B. a 3 2
C. a 3 8
D. 3 a 3 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là D.
Khi SD thay đổi thi AC thay đổi. Đặt AC = x.
Gọi O = A C ∩ B D .
Vì S A = S B = S C nên chân đường cao SH trùng với tâm đường tròn ngoại tiếp tam giác ABC.
⇒ H ∈ B O
Ta có: O B = a 2 − x 2 2 = 4 a 2 − x 2 4 = 4 a 2 − x 2 2
S A B C = 1 2 O B . A C = 1 2 x . 4 a 2 − x 2 2 = x 4 a 2 − x 2 4
H B = R = a . a . x 4 S A B C = a 2 x 4. x 4 a 2 − x 2 4 = a 2 4 a 2 − x 2
S H = S B 2 − B H 2 = a 2 − a 4 4 a 2 − x 2 = a 3 a 2 − x 2 4 a 2 − x 2
S H = S B 2 − B H 2 = a 2 − a 4 4 a 2 − x 2 = a 3 a 2 − x 2 4 a 2 − x 2
= 1 3 a x . 3 a 2 − x 2 ≤ 1 3 a x 2 + 3 a 2 − x 2 2 = a 3 2
Chọn D
Gọi I là tâm hình thoi ABCD, H là hình chiếu của S lên mặt phẳng (ABCD).
Ta có SA = SB = SC nên hình chiếu vuông góc của S xuống mặt phẳng (ABCD) trùng với tâm đường tròn ngoại tiếp ΔABC hay H ∈ BI
Khi đó tam giác SBD vuông tại S.
Hoặc ΔABC = ΔASC = ΔADC (c-c-c) nên IB = IS = ID, do đó ΔSBD vuông tại S.
Giả sử SD = x.
Chọn B.
Phương pháp:
Gọi I, J lần lượt là trung điểm của AB, CD.
Đáp án A
Gọi E và F là trung điểm của AB và CD ta có: S E ⊥ A B ⇒ S E ⊥ C D ⇒ S E ⊥ giao tuyến của 2 mặt phẳng (SAB) và (SCD) vì giao tuyến này song song với AB.
Đáp án C