K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

NV
15 tháng 12 2020

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

NV
18 tháng 10 2019

Bài 1 làm rồi, và bài 4 chỉ làm được khi đề yêu cầu tìm số nguyên tố, còn số nguyên thì pt có vô số nghiệm

2/ \(T=\left(sin^2x\right)^3+\left(cos^2x\right)^3+3sin^2x.cos^2x+\frac{sin^2x}{cos^2x}.cos^2x+\frac{cos^2x}{sin^2x}.sin^2x\)

\(=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x+sin^2x+cos^2x\)

\(=1^3-3sin^2x.cos^2x.1+3sin^2x.cos^2x+1\)

\(=2\)

3/ Trước hết ta có BĐT sau với số dương:

\(x^3+y^3\ge xy\left(x+y\right)\)

Thật vậy, BĐT tương đương:

\(x^3-x^2y-\left(xy^2-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Kết hợp với BĐT \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Rightarrow B\ge ab\left(a+b\right)+4\left(a^2+b^2\right)^2+\frac{2}{ab}\)

\(B\ge ab+\frac{1}{16ab}+4\left(\frac{\left(a+b\right)^2}{2}\right)^2+\frac{31}{16ab}\)

\(B\ge2\sqrt{\frac{ab}{16ab}}+4\left(\frac{1}{2}\right)^2+\frac{31}{4\left(a+b\right)^2}=\frac{1}{2}+1+\frac{31}{4}=\frac{37}{4}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

NV
18 tháng 10 2019

Làm 1 cách thôi, 2 cách làm biếng lắm :(

27 tháng 3 2018

19 tháng 12 2018

(2): B

(3):

a) Phương trình -5x-1=0 có tập nghiệm là \(S=\left\{\frac{-1}{5}\right\}\)

b) Phương trình \(9x^2+16=0\) có tập nghiệm là \(\varnothing\)

c) Phương trình 2(x-1)=2(x+1) có tập nghiệm là: \(x\in\varnothing\)

d) Phương trình \(\left(x+2\right)^2=x^2+4x+4\) có tập nghiệm là \(x\in R\)

(4): Không có câu nào đúng

4 tháng 2 2018

a) Giải phương trình theo b khi a=3

Lời giải :

\(1-\dfrac{2b}{x-b}=\dfrac{a^2-b^2}{b^2+x^2-2bx}\)

\(\Leftrightarrow1-\dfrac{2b}{x-b}=\dfrac{a^2-b^2}{\left(b-x\right)^2}\)

\(\Leftrightarrow\) \(\dfrac{\left(x-b\right)^2}{\left(x-b\right)^2}-\dfrac{2b\left(x-b\right)}{\left(x-b\right)^2}=\dfrac{a^2-b^2}{\left(x-b\right)^2}\)

\(\Rightarrow\left(x-b\right)^2-2bx-2b^2=a^2-b^2\)

\(\Leftrightarrow x^2-2xb+b^2-2bx+2b^2=a^2-b^2\)

\(\Leftrightarrow x^2-2xb+b^2-2bx+2b^2-a^2+b^2=0\)

\(\Leftrightarrow x^2-4xb+4b^2-a^2=0\)

\(\Leftrightarrow\left(x-2b\right)^2-a^2=0\)

Tại a=3

=> \(a^2=9\)

\(\Leftrightarrow\left(x-2b\right)^2-9=0\)

\(\Leftrightarrow\left(x-2b-3\right)\left(x-2b+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2b-3=0\\x-2b+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2b=3\\x-2b=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}b=\dfrac{x-3}{2}\\b=\dfrac{x+3}{2}\end{matrix}\right.\)

4 tháng 2 2018

Akai Haruma

Ribi Nkok Ngok

Võ Đông Anh Tuấn

Gia Hân Ngô

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0
Câu 1:  Phương trình (3,5x−7)(2,1x−6,3)=0 có tổng các nghiệm bằngA:6                      B:3               C:5                D:4Câu 2: Nghiệm của phương trình 4(3x−2)−3(x−4)=7x+20 là x=a.Chọn khẳng định đúng:A:6<a<=8                    B:5<a<7               C:7<a<8            D:8<a<=10   Câu 3: Tập nghiệm của phương trình (x−2)(x+2)=0 là :A:S={-2;2}            B:S={2}           C:S={vô nghiệm}           D:S={-2}Câu 4: Tổng giá trị các nghiệm của hai...
Đọc tiếp

Câu 1:  Phương trình (3,5x−7)(2,1x−6,3)=0 có tổng các nghiệm bằng

A:6                      B:3               C:5                D:4

Câu 2: Nghiệm của phương trình 4(3x−2)−3(x−4)=7x+20 là x=a.

Chọn khẳng định đúng:

A:6<a<=8                    B:5<a<7               C:7<a<8            D:8<a<=10   

Câu 3: Tập nghiệm của phương trình (x−2)(x+2)=0 là :

A:S={-2;2}            B:S={2}           C:S={vô nghiệm}           D:S={-2}

Câu 4: Tổng giá trị các nghiệm của hai phương trình bên dưới là:

(x^2+x+1)(6−2x)=0 và (8x−4)(x^2+2x+2)=0

A:13/5             B:13/2          C:7/2         D:13/3

Câu 5: Các giá trị k thỏa mãn phương trình (3x+2k−5)(x−3k+1)=0 có nghiệm x=1 là:

A:k=2 và k=1          B:k=3 và k=1/2             C:k=1 và k=2/3         D:k=2 và k=1/3

Câu 6: Tập nghiệm của phương trình x^2+3x−4=0 là

A:S={-4;1}           B:S={vô nghiệm}           C:S={-1;4}        D:S={4;1}

Câu 7: Phương trình (3x−2)(2(x+3)/7−(4x−3)/5)=0 có 2 nghiệm x1,x2 Tích x1.x2 có giá trị bằng

A:x1.x2=17/3       B:x1.x2=5/9           C:x1.x2=17/9          D:x1.x2=17/6

Câu 8: Cho phương trình  (x−5)(3−2x)(3x+4)=0  và (2x−1)(3x+2)(5−x)=0 .

Tổng giá trị các nghiệm của 2 phương trình trên là:

A:11          B:9           C:12           D:10

Câu 9: Phương trình (3−2x)(6x+4)(5−8x)=0. Nghiệm lớn nhất của phương trình là:

A:x=2/3           B:x=8/5         C:x=3/2         D:x=5/8

Câu 10: Phương trình (4x−10)(24+5x)=0 có nghiệm là:

A:x=5/2 và x=24/5     B:x=-5/2 và x=-24/5              C:x=5/2 và x=-24/5

D:x=-5/2 và x=24/5

2
23 tháng 2 2021

1C

3A

4C

5C

6A

9C

10C

23 tháng 2 2021

1.C

2.

3.A

4.C

5.C

6.A

7.

8.

9.C

10.C