K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

Chọn C

17 tháng 8 2017

28 tháng 3 2018

Chọn D

Quan sát đồ thị hàm số y= f’( x) 

+ Trên khoảng (0; 2)  ta thấy đồ thị hàm số y= f’( x) nằm bên dưới trục hoành.

=>  Trên khoảng (0; 2) thì f’( x)  < 0.

=> Hàm số y= f( x) nghịch biến trên khoảng ( 0; 2) .

20 tháng 7 2017

Chọn D.

Từ đồ thị của y=f’(x) ta có f’(x)<0 với xÎ(0;2). Suy ra f(x) nghịch biến trên khoảng (0;2)

4 tháng 9 2018

18 tháng 4 2018

Chọn A 

+ Xét f’(x) = 0 khi x= -2; x= 0 hoặc  x= 2.

+ Với x= -2:  Giá trị của hàm số y= f’(x)  đổi dấu từ âm sang dương khi qua x= -2

=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -2.

+ Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua x= 0  nên x= 0 không là điểm cực trị của hàm số.

+ Với x= 2:  Giá trị của hàm số y= f’(x)  đổi dấu từ dương sang âm khi qua x= 2

=> Hàm số y= f(x) đạt cực  đại tại điểm x= 2.

1 tháng 3 2019

26 tháng 7 2019

Chọn A

Đồ thị của hàm số liên tục trên các đoạn , lại có là một nguyên hàm của .

Do đó diện tích của hình phẳng giới hạn bởi các đường:

là: 

.

Tương tự: diện tích của hình phẳng

giới hạn bởi các đường: là: 

.

Mặt khác, dựa vào hình vẽ ta có: .

Từ (1), (2) và (3) ta chọn đáp án A. 

 

( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )

20 tháng 9 2019

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn

2 tháng 4 2017

Đáp án C