K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

18 tháng 11 2018

vì x và y cùng dấu nên ta có : \(\left|x\right|+\left|y\right|=\left|x+y\right|\)

do đó : \(\left|x+y\right|=12\)

vì : \(12\ge0\) nên ta có hai trường hợp : \(x+y=12\) và \(x+y=-12\)

vậy : \(x+y=\pm12\)

20 tháng 11 2018

vì x và y cùng dấu nên ta có : \(|x|+|y|=|x+y|\)

do đó :\(|x+y|=12\)

vì 12 >0 nên ta có 2 trường hợp : x + y = 12 và  x + y = - 12

vậy : x + y = \(\pm\) 12

28 tháng 2 2021

`x+y=3`

`<=>(x+y)^3=9`

`<=>x^2+2xy+y^2=9`

`<=>2xy+5=9`

`<=>2xy=4`

`<=>xy=2`

`<=>x^2-xy+y^2=3`

`=>M=(x+y)(x^2-xy+y^2)`

`=3.3`

`=9`

28 tháng 2 2021

x+y=3

⇔(x+y)2=9

⇔x2+2xy+y2=9

⇔2xy+5=9(Vì x2+y2=5)

⇔2xy=4

⇔xy=2

Có : x2+y2=5

\(\Rightarrow\)x2+y2-xy =3

Có M=x3+y3

\(\Rightarrow\)M=(x+y)(x2−xy+y2)

\(\Rightarrow\)M=3.3

\(\Rightarrow\)M=9

16 tháng 9 2018

Biến đổi: 4 x 2 − 4 xy + y 2 = 0 ⇔ ( 2 x − y ) 2 = 0 ⇔ 2 x = y  

Thay y = 2x vào P ta được P = -3

17 tháng 10 2017

Ta có  ( x + y ) 2 = x 2 + y 2 + 2 x y = 4 − 2 3 = ( 3 − 1 ) 2    ⇒    x + y = 3 − 1.

Suy ra  P = x + y = 3 − 1      k h i     x + y ≥ 0 1 − 3      k h i     x + y < 0 .

9 tháng 11 2021

cho hai số x,y thỏa mãn x+y=x.y=x/y, với y khác 0. Tính giá trị biểu thức P=2022x+2021y - Hoc24

9 tháng 11 2021

\(ĐK:y\ne0\)

\(x+y=\dfrac{x}{y}\Leftrightarrow xy+y^2=x\)

Mà \(xy=x+y\Leftrightarrow x+y+y^2=x\)

\(\Leftrightarrow y\left(y+1\right)=0\Leftrightarrow y=-1\left(y\ne0\right)\\ \Leftrightarrow x-1=\dfrac{x}{-1}=-x\\ \Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(P=2022\cdot\dfrac{1}{2}+2021\left(-1\right)=1011-2021=-1010\)

NV
28 tháng 8 2021

\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)

\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)

\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)

Đặt \(xy=a\Rightarrow0\le a\le4\)

\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)

\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)

\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)

\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)

25 tháng 12 2016

giúp mình với . mình đang cần gấp nhé!