K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Chọn A

Phương pháp

Tính chiều cao SA theo định lý Pytago

Tính thể tích khối chóp theo công thức 

với h là chiều cao hình chóp và S là diện tích đáy.

Cách giải:

31 tháng 10 2017

Chọn A.

Phương pháp

Tính chiều cao SA theo định lý Pytago

Tính thể tích khối chóp theo công thức V = 1 3 h . S  với h là chiều cao hình chóp và S là diện tích đáy.

Cách giải:

1 tháng 10 2018

Đáp án D.

Ta có S C ∩ A B C D = C  và 

Ta có

S A ⊥ A B C D ⇒ S C , A B C D ^ = S C , A C ^ = S C A ^ = 60 °

tan S C A ^ = S A A C ⇒ S A = A C tan S C A ^ = a 3 ⇒ V S . A B C D = 1 3 S A . S A B C D = a 3 3 3 .

3 tháng 4 2018

Chọn đáp án D.

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

23 tháng 11 2019

2 tháng 11 2017

Đáp án A

Tam giác SAC vuông tại A suy ra:

S A = S C 2 − A C 2 = a 5 2 − a 2 2 = a 3

Thể tích khối chóp S.ABCD là 

V S . A B C D = 1 3 . S A . S S . A B C D = 1 3 . a 3 . a 2 = a 3 3 3

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

6 tháng 5 2017