Cho hàm số y=f(x) có bảng biến thiên dưới đây. Mệnh đề nào sau đây là đúng?
A. Hàm số đạt cực tiểu tại x = 4
B. Đồ thị hàm số có đường tiệm cận ngang
C. Hàm số có y C D = 4
D. Đồ thị hàm số có một tiệm cận đứng là đường thẳng x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Đk để hàm số xác định là: . Vậy mệnh đề đúng.
Do hàm số có tập xác định nên không tồn tại do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề sai.
Do nên đồ thị hàm số có đường tiệm cận đứng là và . Vậy đúng.
Ta có
Do bị đổi dấu qua nên hàm số có một cực trị. Vậy mệnh đề đúng.
Do đó số mệnh đề đúng là .
Đáp án B
Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .
Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒ Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.
Tiệm cận đứng: x=3; tiệm cận ngang: y=1. Đồ thị hàm số nhận giao điểm I 3 ; 1 của hai đường tiệm cận làm tâm đối xứng.
Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4 đúng và chọn ngay A.
Tuy nhiên đây là phương án sai.
Phân tích sai lầm:
Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3 và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.
Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.
Mệnh đề 3 , 4 đúng.