Tìm x biết:
a) |x - 1| \(\le\) 4
b) |x - 2011| \(\ge\) 2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy:
\(2011.x^{2012}+1\ge2012.x^{2011}\) ; \(2011y^{2012}+1\ge2012x^{2011}\)
\(\Rightarrow2011\left(x^{2012}+y^{2012}\right)\ge2011\left(x^{2011}+y^{2011}\right)+x^{2011}+y^{2011}-2\)
Mặt khác \(x^{2011}+2010\ge2011x\) ; \(y^{2011}+2010\ge2011y\)
\(\Rightarrow x^{2011}+y^{2011}\ge2011\left(x+y\right)-2010.2=2\)
\(\Rightarrow2011\left(x^{2012}+y^{2012}\right)\ge2011\left(x^{2011}+y^{2011}\right)\)
\(\Rightarrow x^{2012}+y^{2012}\ge x^{2011}+y^{2011}\)
Dấu "=" xảy ra khi \(x=y=1\)
a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)
Vậy \(x>16\)
b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)
Vậy \(x\le4\)
c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)
Vậy \(x\le-32\)
Xét \(\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)\)
\(=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)\)
\(=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)\) (do \(x-1=1-y\))
\(\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)\)
+ Giả sử \(x\ge y\Rightarrow x^{2011}\ge y^{2011}\) và \(x\ge1\ge y\)
Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)
+ Tương tự nếu \(y\ge x\Rightarrow y^{2011}\ge x^{2011}\) và \(y\ge1\ge x\)
Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
Xét \left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)(x2012+y2012)−(x2011+y2011)
=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)=x2011(x−1)+y2011(y−1)
=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)=x2011(1−y)+y2011(y−1) (do x-1=1-yx−1=1−y)
\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)⇔(x2012+y2012)−(x2011+y2011)=(1−y)(x2011−y2011)
+ Giả sử x\ge y\Rightarrow x^{2011}\ge y^{2011}x≥y⇒x2011≥y2011 và x\ge1\ge yx≥1≥y
Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0(1−y)(x2011−y2011)≥0 (Đpcm)
+ Tương tự nếu y\ge x\Rightarrow y^{2011}\ge x^{2011}y≥x⇒y2011≥x2011 và y\ge1\ge xy≥1≥x
Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0(1−y)(x2011−y2011)≥0 (Đpcm)
Dấu "=" xảy ra khi x=y=1x=y=1
a, \(\left(\dfrac{1}{2}+\dfrac{4}{7}\right):x=\dfrac{-3}{4}\)
\(\dfrac{15}{14}:x=\dfrac{-3}{4}\)
=> x= \(\dfrac{-7}{10}\)
b, 0,5:x-\(1\dfrac{3}{4}\)= 25%
0,5:x-\(\dfrac{7}{4}=\dfrac{1}{4}\)
0,5:x = 2
=> x = \(\dfrac{1}{4}\)