K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

Áp dụng BĐT Cauchy:

\(2011.x^{2012}+1\ge2012.x^{2011}\) ; \(2011y^{2012}+1\ge2012x^{2011}\)

\(\Rightarrow2011\left(x^{2012}+y^{2012}\right)\ge2011\left(x^{2011}+y^{2011}\right)+x^{2011}+y^{2011}-2\)

Mặt khác \(x^{2011}+2010\ge2011x\) ; \(y^{2011}+2010\ge2011y\)

\(\Rightarrow x^{2011}+y^{2011}\ge2011\left(x+y\right)-2010.2=2\)

\(\Rightarrow2011\left(x^{2012}+y^{2012}\right)\ge2011\left(x^{2011}+y^{2011}\right)\)

\(\Rightarrow x^{2012}+y^{2012}\ge x^{2011}+y^{2011}\)

Dấu "=" xảy ra khi \(x=y=1\)

21 tháng 4 2017

Xét \(\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)\)

\(=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)\)

\(=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)\) (do \(x-1=1-y\))

\(\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)\)

+ Giả sử \(x\ge y\Rightarrow x^{2011}\ge y^{2011}\) và \(x\ge1\ge y\)

Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)

+ Tương tự nếu \(y\ge x\Rightarrow y^{2011}\ge x^{2011}\) và \(y\ge1\ge x\)

Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

27 tháng 12 2022

Xét \left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)(x2012+y2012)(x2011+y2011)

=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)=x2011(x1)+y2011(y1)

=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)=x2011(1y)+y2011(y1) (do x-1=1-yx1=1y)

\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)(x2012+y2012)(x2011+y2011)=(1y)(x2011y2011)

+ Giả sử x\ge y\Rightarrow x^{2011}\ge y^{2011}xyx2011y2011 và x\ge1\ge yx1y

Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0(1y)(x2011y2011)0 (Đpcm)

+ Tương tự nếu y\ge x\Rightarrow y^{2011}\ge x^{2011}yxy2011x2011 và y\ge1\ge xy1x

Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0(1y)(x2011y2011)0 (Đpcm)

Dấu "=" xảy ra khi x=y=1x=y=1

 

2 tháng 3 2021

\(x= \dfrac{2011^3-1}{2011^2+2012} = \dfrac{(2011-1)(2011^2+2011+1)}{2011^2 + 2011 + 1} = 2010\)

\(y = \dfrac{2012^3+1}{2012^2-2011} = \dfrac{(2012+1)(2012^2-2012+1)}{2012^2-2012 + 1} = 2013\)

Suy ra:

 x + y = 2010 + 2013 = 4023

20 tháng 8 2017

x2+y2+z2= xy+yz+zx.

=> 2x2+2y2+2z2-2xy-2yz-2zx=0

=> ( x-y)2+(y-z.)2+(z-x)=0

=> x=y=z=0

Thay x=y=z vào x2011+y2011+z2011=32012 ta được:

3.x2011=3.32011

=> x2011=32011

=> x=3 hoặc x = -3

Hay x=y=z=3 hoặc x=y=z=-3

20 tháng 8 2017

1) có bn giải rồi ko giải nữa

2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)

Với mọi n thuộc N ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)

\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)

Áp dụng ta được :

\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2