K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

19 tháng 11 2023

a: \(A=\dfrac{x^2+1}{x}+\dfrac{x^3-1}{x^2-x}+\dfrac{x^4-x^3+x-1}{x-x^3}\)

\(=\dfrac{x^2+1}{x}+\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}-\dfrac{x^3\left(x-1\right)+\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+1}{x}+\dfrac{x^2+x+1}{x}-\dfrac{\left(x-1\right)\left(x^3+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+1+x^2+x+1}{x}-\dfrac{x^2-x+1}{x}\)

\(=\dfrac{2x^2+x+2-x^2+x-1}{x}=\dfrac{x^2+2x+1}{x}=\dfrac{\left(x+1\right)^2}{x}\)

b: \(x^2+x=12\)

=>\(x^2+x-12=0\)

=>(x+4)(x-3)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)

Thay x=3 vào A, ta được:

\(A=\dfrac{\left(3+1\right)^2}{3}=\dfrac{16}{3}\)

Khi x=-4 thì \(A=\dfrac{\left(-4+1\right)^2}{-4}=\dfrac{9}{-4}=-\dfrac{9}{4}\)

c: \(A-4=\dfrac{\left(x+1\right)^2}{x}-4\)

\(=\dfrac{\left(x+1\right)^2-4x}{x}\)

\(=\dfrac{x^2+2x+1-4x}{x}=\dfrac{x^2-2x+1}{x}=\dfrac{\left(x-1\right)^2}{x}\)>0 với mọi x>0

=>A>4

19 tháng 11 2023

Cảm ơn anh mà anh giải nốt phần cuối nữa được không ạ?

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

a, Khi x = 2, ta được: 

\(A=\dfrac{4}{2\sqrt{2}-2}=2+2\sqrt{2}\)

b, \(B=\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\\ \Rightarrow B=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ \Rightarrow B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(P=B:A=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{4}=-\left(\sqrt{x}-1\right)=1-\sqrt{x}\) (đpcm)

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

5 tháng 8 2023

a) Thay x=64 vào Q ta có:

\(Q=\dfrac{\sqrt{64}-2}{\sqrt{64}-3}=\dfrac{8-2}{8-3}=\dfrac{6}{5}\)

b) \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)

\(P=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(dpcm\right)\)

15 tháng 5 2021

                      Bài làm :

1) Khi x=9 ; giá trị của A là :

\(A=\frac{\sqrt{9}}{\sqrt{9}+2}=\frac{3}{3+2}=\frac{3}{5}\)

2) Ta có :

\(B=...\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

3) Ta có :

\(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+2}\div\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)

Xét :

\(\frac{A}{B}+1=\frac{4}{\sqrt{x+2}}>0\Rightarrow\frac{A}{B}>-1\)

=> Điều phải chứng minh

4 tháng 6 2021

1, thay x=9(TMĐKXĐ) vào A ta đk:

A=\(\dfrac{\sqrt{9}}{\sqrt{9}-2}=3\)

vậy khi x=9 thì A =3

2,với x>0,x≠4 ta đk:

B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

vậy B=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

3,\(\dfrac{A}{B}>-1\) (x>0,x≠4)

\(\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}>-1\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}>-1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>-1\)

\(\sqrt{x}-2>-1\) (vì \(\sqrt{x}+2>0\))

\(\sqrt{x}>1\)⇔x=1 (TM)

vậy x=1 thì \(\dfrac{A}{B}>-1\) với x>0 và x≠4

6 tháng 7 2017

Với  x ≥ 0 ,   x ≠ 1 ,   x ≠ 4 ta có:

Q = x + 27 . P x + 3 x − 2 = x + 27 x + 3 = x − 9 + 36 x + 3 = x − 3 + 36 x + 3 = − 6 + x + 3 + 36 x + 3 ≥ − 6 + 12 = 6

a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)

b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)

Để P lớn nhất thì căn x-2=1

=>căn x=3

=>x=9

15 tháng 11 2016

\(A=x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy A > 0 với mọi x.

\(B=x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)

Vậy B > 0 với mọi x, y.

\(M=x^2-6x+12\)

\(=x^2-6x+9+3\)

\(=\left(x-3\right)^2+3\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+3\ge3\)

\(MinB=3\Leftrightarrow x=3\)

\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)

\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)

\(2x^2+6x+5-2x^2+4x-2=7\)

\(10x=7+3\)

\(10x=10\)

\(x=1\)

\(x^2+x=0\)

\(x\left(x+1\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)

\(x^3-\frac{1}{4}x=0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)

\(\left(x+10\right)^2-\left(x^2+2x\right)\)

\(=x^2+20x+100-x^2-2x\)

\(=18x+100\)

\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)

\(=x^2-4+x^3-1-x^3-x^2\)

\(=-5\)