Cho hai số phức u, v thỏa mãn 3 u - 6 i + 3 u - 1 - 3 i = 5 10 , v - 1 + 2 i = v ¯ + i . Giá trị nhỏ nhất của u - v là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) \(\left(x^2+1\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+1=0\\x^2+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=-1\\x^2=-5\end{array}\right.\) loại ( vì \(x^2\ge0\) )
Vậy không có giá trị nào thõa mãn .
2 ) \(4x\left(5x-1\right)+10x.\left(2-2x\right)=16\)
\(\Leftrightarrow20x^2-4x+20x-20x^2=16\)
\(\Leftrightarrow16x=16\)
\(\Leftrightarrow x=1\)
3 ) \(\left(100-a\right)\left(100-b\right)\)
\(=10000-100b-100a-ab\)
\(=100\left(100-a-b\right)-ab\)
\(\Rightarrow x=-1\)
Ta có: \(\hept{\begin{cases}\left(\sqrt{u^2+2}+u\right)\left(\sqrt{u^2+2}-u\right)=2\\\left(\sqrt{v^2-2v+3}+v-1\right)\left(\sqrt{v-2v+3}-v+1\right)=2\end{cases}}\)
Theo đề bài thì ta có:
\(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)
Từ đây ta có hệ:
\(\hept{\begin{cases}\sqrt{u^2+2}-u=\sqrt{v^2-2v+3}+v-1\left(1\right)\\\sqrt{u^2+2}+u=\sqrt{v^2-2v+3}-v+1\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được: \(u+v=1\)
Ta có: \(u^3+v^3+3uv=1\)
\(\Leftrightarrow3uv+u^2-uv+v^2=1\)
\(\Leftrightarrow\left(u+v\right)^2=1\)(đúng)
\(\Rightarrow\)ĐPCM
1: Nhận biết
Câu 1: Nếu a chia hết cho b thì
-a là bội của b
-b là ước của a
Câu 2: A
Câu 3: Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
Câu 4: Nếu hai số a,b chia hết cho c thì \(a\pm b⋮c\)
Câu 5: A
Câu 6: C,D
Câu 7: A
Câu 8: B
2: Thông hiểu:
Câu 1: 3 bội của 3 là 0; -3;9
Câu 2: Ư(3)={1;-1;3;-3}
Câu 3: Ta có: 3x=-12
hay x=-4
Vậy: x=-4
Câu 5: 5 bội của -2 là 0; -2; 2; 6; 8
Câu 6: Ư(31)={1;-1;31;-31}
Câu 7: Ta có: 2x=16
hay x=8
Vậy: x=8
3: Vận dụng:
Câu 1: Các bội của 4 là 8;20;32
4: Vận dụng cao:
Câu 3:
Ta có: \(4x+3⋮x-2\)
\(\Leftrightarrow4x-8+11⋮x-2\)
mà \(4x-8⋮x-2\)
nên \(11⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(11\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{3;1;13;-9\right\}\)(tm)
Vậy: \(x\in\left\{3;1;13;-9\right\}\)
Đáp án B.