Cho hình bình hành ABCD trên tia DA lấy M sao cho AM = AD.
a) chứng minh AMBC là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Vì BN = DQ , AD = BC => AD - DQ = BC - BN hay AQ = NC
Xét tam giác AQM và CNP có:
\(\hept{\begin{cases}AQ=CN\\AM=CP\\\widehat{QAM}=\widehat{NCP}\left(doABCDl\text{à}hbh\right)\end{cases}}\)
\(\Rightarrow\Delta AQM=\Delta CNP\left(c.g.c\right)\Rightarrow QM=NP\)
Hoàn toàn tương tự: △MBN=△PDQ(c.g.c)⇒MN=PQ
Tứ giác MNPQMNPQ có 2 cặp cạnh đối bằng nhau nên là hình bình hành.
=> MNPQ là hình bình hành.
b) Gọi K là giao điểm của AC và MP
Xét tam giác AKM và CKP ta có:
\(\hept{\begin{cases}\widehat{KAM}=\widehat{KCP}\left(slt\right)\\\widehat{KMA}=\widehat{KPC\left(slt\right)}\\\Rightarrow AM=CP\end{cases}}\)
\(\Rightarrow\Delta AKM=\Delta CKP\left(g.c.g\right)\)
\(\Rightarrow AK=CK;KM=KP\left(1\right)\)
Vì ABCDABCD là hình bình hành nên hai đường chéo AC,BDAC,BD cắt nhau tại trung điểm mỗi đường. Tương tự, MNPQMNPQ là hình bình hành nên MP,QNMP,QN cắt nhau tại trung điểm mỗi đường
Mà từ (1)(1) suy ra KK là trung điểm của AC,MPAC,MP, do đó KK cũng là trung điểm của BD,QNBD,QN
Do đó AC,BD,MP,NQAC,BD,MP,NQ đồng quy tại (trung điểm) KK.
a: Xét tứ giác AMBC có
AM//BC
AM=BC
Do đó: AMBC là hình bình hành
a: Ta có: BC=DA(BADC là hình bình hành)
\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)
\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)
Do đó: MB=MC=NA=ND
Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
b: Hình bình hành ABMN có BA=BM(=BC/2)
nên ABMN là hình thoi
c: Ta có: MB//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
mà \(\widehat{EAD}=60^0\)
nên \(\widehat{EBM}=60^0\)
Ta có: BA=BE
BA=BM(=BC/2)
Do đó: BE=BM
Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét tứ giác ANME có NM//AE(ABMN là hình thoi)
nên ANME là hình thang
Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)
nên ANME là hình thang cân
=>AM=NE
đề sai