K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét ΔCDM có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NM=NC(1)

Xét ΔANB có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

Suy ra: AM=MN(2)

từ (1) và (2) suy ra AM=MN=NC

26 tháng 12 2021

undefined

Đề câu d lỗi

26 tháng 12 2021

cho em hỏi câu a sao góc MDB và góc CAD lại so le trong vậy ạ?

30 tháng 12 2020

Bn tự vẽ hình nha

a, Xét tứ giác ABCD có

MA=MC=1/2AC( m là trung điểm AC-gt)

MB=MD=1/2BD(B đối D qua M-gt)

Mà BD cắt AC tại M

-> ABCD là hình bình hành

31 tháng 12 2020

undefined 

a) Do B và D đối xứng qua M

\(\Rightarrow\) M là trung điểm BD

Tứ giác ABCD có:

M là trung điểm AC (gt)

M là trung điểm BD (cmt)

\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

b) Do ABCD là hình bình hành

\(\Rightarrow\) AB // CD và AB = CD

\(\Rightarrow\) AN // CD

Do B và N đối xứng nhau qua A

\(\Rightarrow AN=AB\)

Mà AB = CD (cmt)

\(\Rightarrow\) AN = CD

Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)

\(\Rightarrow AN\perp AC\)

\(\Rightarrow\widehat{CAN}=90^0\)

Tứ giác ACDN có:

AN // CD (cmt)

AN = CD (cmt)

\(\Rightarrow ACDN\) là hình bình hành

\(\widehat{CAN}=90^0\)

\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)

c) Gọi E là giao điểm của MN và BC

Do AK // MN (gt)

\(\Rightarrow AK\) // ME và AK // NE

\(\Delta BNE\)

AK // NE

A là trung điểm BN

\(\Rightarrow\) K là trung điểm BE

\(\Rightarrow KB=KE\)

\(\Delta AKC\) có:

AK // ME (cmt)

M là trung điểm AC

\(\Rightarrow\) E là trung điểm CK

\(\Rightarrow\) KC = 2 KE

Mà KB = KE (cmt)

\(\Rightarrow\) KC = 2 KB

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

21 tháng 11 2021

Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)

21 tháng 11 2021

viết code hả bạn??? đọc lòi mắt

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0