K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

14 tháng 9 2019

23 tháng 4 2017

a. Biểu thức đã cho có nghĩa khi \(\sqrt{x^2-4}\)\(\sqrt{x-2}\) đồng thời có nghĩa

* \(\sqrt{x^2-4}=\sqrt{\left(x-2\right)\left(x+2\right)}\) có nghĩa khi x \(x\le-2\) hoặc \(x \ge2\)

* \(\sqrt{x-2}\) có nghĩa khi \(x\ge2\)

Vậy điều kiện để biểu thức đã cho có nghĩa là \(x\ge2\)

Với điều kiện trên ta có:

\(\sqrt{x^2-4}+2\sqrt{x-2}=\sqrt{\left(x-2\right)\left(x+2\right)}+2\sqrt{x-2}=\sqrt{x-2}\left(\sqrt{x+2}+2\right)\)

13 tháng 8 2016

Bài 1:

a) \(ĐK:\begin{cases}x^2-4\ge0\\x-2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge4\\x-2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2;x\ge-2\\x\ge2\end{cases}\)\(\Leftrightarrow x\ge2\)

\(\sqrt{x^2-4}+2\sqrt{x-2}=\sqrt{\left(x-2\right)\left(x+2\right)}-2\sqrt{x-2}=\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)\)

b) \(ĐK;\begin{cases}x+3\ge0\\x^2-9\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-3\\x^2\ge9\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-3\\x\ge3;x\ge-3\end{cases}\)\(\Leftrightarrow x\ge3\)

\(3\sqrt{x+3}+\sqrt{x^2-9}=2\sqrt{x+3}+\sqrt{\left(x-3\right)\left(x+3\right)}=\sqrt{x+3}\left(2+\sqrt{x-3}\right)\)

13 tháng 8 2016

baif 2: a) \(\sqrt{x-5}=3\) diều kiện x>=5

pt<=> x-5=9<=>x=14 (thỏa)

b) \(\sqrt{x-10}=-2\) diều kiện x>=10

nhưng ta thầy VT>=0 mà VP<0=> pt trên vô nghiệm

c) \(\sqrt{2x-1}=\sqrt{5}\) diều kiện x>=1/2

pt<=>\(2x-1=5\)<=> x=3(thỏa)

d) \(\sqrt{4-5x}=12\) điều kiện x<=4/5

pt<=> 4-5x=144<=> x=-28 (loại)

Bài 1:a) điều kiện x^2-4>=0 và x-2>=0

<=> x<=-2,x>=2 và x>=2

=> điều kiện là x>=2

b)điều kiện x+3>=0 và x^2-9>=0

<=> x>=-3     và    x<=-3, x>=3

=> điều kiện là > x>=3

21 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi 4ax + 6x + 9y + 6ay ≠ 0

⇒ 2x(2a + 3) + 3y(2a + 3) = (2a + 3)(2x + 3y)  ≠  0

Ta có: 2a + 3  ≠  0 ⇒ a  ≠  - 3/2 ; 2x + 3y  ≠  0 ⇒ x  ≠  - 3/2 y

Điều kiện: x  ≠  - 3/2 y và a  ≠  - 3/2

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào x, y.

14 tháng 7 2021

Để \(\sqrt{x^2+3}\) có nghĩa thì \(x^2+3\ge0\) (luôn đúng)

Để \(\sqrt{\left(x-1\right)\left(x+2\right)}\) có nghĩa thì \(\left(x-1\right)\left(x+2\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\)

13 tháng 8 2021

\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(x\ge0;x\ne3;x\ne-3;x\ne9;x\ne4\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}\\ =\dfrac{3}{\sqrt{x}-2}\)

Tick hộ nha 😘

điều kiện ko cs \(x\ne\pm3\) nha bn

28 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi:

(x + y)(6x – 6y) ≠ 0 ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điều kiện x  ≠  ± y

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào x, y.

18 tháng 4 2017

2 tháng 11 2021

Bài 5:

\(x^3=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=18\\ y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=6\\ P=x^3+y^3-3\left(x+y\right)+1993\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1993\\ P=18+6+1993=2017\)

2 tháng 11 2021

x3=18+33√(9+4√5)(9−4√5)(3√9+4√5+3√9−4√5)⇔x3=18+3x3√1⇔x3−3x=18y3=6+33√(3−2√2)(3+2√2)(3√3+2√2+3√3−2√2)⇔y3=6+3y3√1⇔y3−3y=6P=x3+y3−3(x+y)+1993P=(x3−3x)+(y3−3y)+1993P=18+6+1993=2017