K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

5 tháng 7 2022

 

.

 

5 tháng 7 2022

undefined

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)

Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)

Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)

Dựa vào $(1)$ và biến đổi đơn giản:

\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)

\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)

\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)

Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)

25 tháng 7 2018

Có thể xem hoàn chỉnh k ạ vì bị cắt

4 tháng 10 2017

8 tháng 12 2019

Đáp án D.

Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x 2 x − 1  là y = ( x 2 ) ' ( x − 1 ) ' ⇔ y = 2 x