K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bài 1:

a: \(x=\dfrac{2}{3}:\dfrac{3}{5}=\dfrac{2}{3}\cdot\dfrac{5}{3}=\dfrac{10}{9}\)

b: \(x=\dfrac{17}{8}:\dfrac{7}{17}=\dfrac{17}{8}\cdot\dfrac{17}{7}=\dfrac{289}{56}\)

c: \(x=-\dfrac{3}{4}:\dfrac{7}{12}=\dfrac{-3}{4}\cdot\dfrac{12}{7}=\dfrac{-63}{28}=-\dfrac{9}{4}\)

d: \(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{1}{4}\)

hay \(x=\dfrac{1}{4}:\dfrac{1}{6}=\dfrac{3}{2}\)

e: \(\Leftrightarrow\dfrac{1}{2}:x=-4-\dfrac{1}{3}=-\dfrac{17}{3}\)

hay \(x=-\dfrac{1}{2}:\dfrac{17}{3}=\dfrac{-3}{34}\)

27 tháng 7 2023

dad

25 tháng 4 2022

1) 1/3 x 1/2 x 3/7 = 3/42 = 1/14

2) 5/4 x 1/3 +1/7 = 5/12 + 1/7 = 35/84 + 12/84 = 47/84

3) 8 x ( 8/9 - 2/3 ) = 8 x 2/9 = 16/9

4) 5/6 x 48/20 x 1/2 = 240/240 = 1

5) ( 2/5 + 3/4 ) + 8 = 23/20 + 8 = 23//20 + 160/20 = 183/20

6) 10 x ( 1/2 - 1/5 ) = 10 x 3/10 = 10/1 x 3/10 = 30/10 = 3

26 tháng 11 2021

ko biết

16 tháng 10 2016

a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)

c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)

d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)

28 tháng 11 2021

=3(5-x)2+2(5-x)-5

6 tháng 5 2017

a có : (y – x)2 = [–(x – y)2] = (x – y)2.

Đặt x – y = z, Khi đó biểu thức trở thành :

(3z4 + 2z3 – 5z2) : z2

= 3z4 : z2 + 2z3 : z2 + (–5z2) : z2

= 3.(z4 : z2) + 2.(z3 : z2) + (–5).(z2 : z2)

= 3.z2 + 2.z + (–5).1

= 3z2 + 2z – 5

Thay trả lại z = x – y ta được kết quả biểu thức bằng : 3(x – y)2 + 2(x – y) – 5.

15 tháng 10 2016

\(\frac{x^4+x^3+6x^2+5x+5}{x^2+x+1}=\frac{x^4+x^3+x^2+5x^2+5x+5}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)}{\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^2+5\right)}{x^2+x+1}=x^2+5\)

\(\frac{x^4+x^3+2x^2+x+1}{x^2+x+1}=\frac{x^4+x^3+x^2+x^2+x+1}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^2+x+1}=\frac{\left(x^2+x+1\right)\left(x^2+1\right)}{x^2+x+1}=x^2+1\)