K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Ta có: 2x + y – 1 = 0 ⇔ 2x + y = 1

Có vô số giá trị của x và y để biểu thức trên xảy ra

Các cặp giá trị có dạng (x ∈R, y = 1 – 2x)

Chẳng hạn: (x = 0; y = 1); (x = 1; y = -1)

Bài 1: 

Để E nguyên thì \(x+5⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{3;1;9;-5\right\}\)

9 tháng 1 2022

Thank you.

14 tháng 11 2016

Do 2x+1 là số lẻ nên 2x+1 =1 hoặc 2x+1 =5
a) 2x+1 =1
y-3=10
=> x=1, y=13 => xy =13
b) 2x+1 =5 => x=2
y-3=2 => y=5
Vậy cặp (x;y) cho tích LN là (2;5)

Bài trc lộn chút xíu nhá !

14 tháng 11 2016

Do 2x+1 là số lẻ nên 2x+1 =1 hoặc 2x+1 =5
a) 2x+1 =1
y-3=10
=> x=1, y=13 => xy =13
b) 2x+1 =5 => x=3
y-3=2 => y=5
Vậy cặp (x;y) cho tích lớn nhất là (3;5)

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

24 tháng 8 2016

xy + 3y - 5x = 9 nhé...mình viết nhầm ạ

 

24 tháng 8 2016

11=1x11=11x1=-1x-11=-11x-1

TH1:

2x-1=1                            y+4=11

2x=2                                y=7

x=1

TH2:

2x-1=11                            y+4=1

2x=12                                y=-5

x=6

TH3:

2x-1=-1                            y+4=-11

2x=-2                                y=-15

x=-1

TH4:

2x-1=-11                            y+4=-1

2x=-10                                y=-5

x=-5