K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

p co dang 3k+1 hoac 3k+2                                                                                                                                                                         3k+1 :9k^2+6k+1+2012=9k^2+6k+2013 ,tong nay chia het 3                                                                                                                        3k+2 :9k^2+12k+4+2012=9k^2+12k+2016 ,tong nay chia het 3                                                                                                                    dpcm

3 tháng 6 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)

- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6  \(⋮\) 3 là hợp số (loại)

- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)

=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)

3 tháng 6 2017

sửa dòng cuối: 21k + 15 \(⋮\)3 là hợp số (đpcm)

18 tháng 1 2016

trừ điểm Lê Nhật Minh đi 

25 tháng 12 2014

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

6 tháng 4 2016

phuong ne 3(k+1)sao la so nguyen to duoc

29 tháng 11 2015

vậy p=3k+1 cho nên 17p+1 chia hết cho 3

21 tháng 4 2016

 Xem clip ko bị " Spam" là gì vầy

17 tháng 8 2016

1) Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

2)a) Tổng của ba hợp số khác nhau nhỏ nhất bằng :

                         4 + 6 + 8 = 18.

b) Gọi 2k+1 là một số lẻ bất kỳ lớn hơn 17. Ta luôn có 2k+1=4+9+(2k−12).

Cần chứng minh rằng 2k−12 là hợp số chẵn (hiển nhiên) lớn hơn 4 (dễ chứng minh).

12 tháng 3 2016

Chung minh 2 so do la hop so kia ma!  Chac la sai rui

12 tháng 3 2016

gọi hai số nguyên liên tiếp là a ;b=a+1

=>a+(a+1)

=>a+a+1

=2a+1

1 tháng 4 2018

Vì p là số nguyen tố lớn hơn 3 nên p là số lẻ không chia hết cho 3\(\Rightarrow\)

p  không chia hết cho 3 thì p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3 (1)

Lại có p^2-1=(p-1)(p+1) vì p là số lẻ nên p-1 và p+1 là 2 số chẵn liên tiếp nên (p-1)(p+1) chia hết cho 8(2)

Từ (1) và (2) suy ra  p^2-1 chia hết cho 3.8=24(vì 8 và 3 nguyên tố cùng nhau)