Tam giác ABC vuông cân tại A. Và tia Ax nằm giữa 2 tia AB, AC. Vẽ BD vuông góc với Ax, CE vuông góc với Ax.
a) c/minh:AD=CE
b) Tìm điều kiện của Ax để BD=CE.
Mình tick 2 lần nhak.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEC vuong tại E và ΔBDA vuông tại D có
AC=BA
góc EAC=góc DBA(=90 độ-góc DAB)
=>ΔAEC=ΔBDA
=>AD=CE
b: BD=CE
=>AD=BD
=>Ax là phân giác của góc BAC
Xét \(\Delta\)ABC: ^A=900; M là trung điểm BC => AM=BM=CM
Ax là tia phân giác ^BAC => ^BAD=^CAE=450.
Mà BD vuông góc Ax, CE vuông góc Ax => 2 tam giác BAD và CAE vuông cân tại D và E.
=> DA=DB và EA=EC.
Xét \(\Delta\)AEM=\(\Delta\)CEM (c.c.c) => ^AEM=^CEM (2 góc tương ứng)
=> EM là phân giác ^AEC => ^AEM=^CEM=900/2=450 hay ^DEM=450.
Tương tự: \(\Delta\)AMD=\(\Delta\)BMD (c.c.c) => ^ADM=^BDM (2 góc tương ứng)
Ta có: ^BDM=^BDE+^EDM=900+^EDM => ^ADM=900+^EDM.
Lại có: ^ADM+^EDM=1800 (kề bù). Thay ^ADM=900+^EDM, ta được:
900+^EDM+^EDM=1800 <=> 2.^EDM=900 => ^EDM=450.
Vậy tam giác DME có: ^DEM=450; ^EDM=450 => ^DME=900.
k mik nha bn
a) Vì ^HAB + ^HAC = 90
^HAB + ^HBA = 90 (1)
=> ^^HAC = ^HBA
Ta có: ^CAy + ^BAx = 180 - 90 = 90
mà ^BAx = ^BAH
=> ^HAB + ^CAy = 90 (2)
từ (1) và (2) => ^HBA = ^CAy
<=> ^HAC = ^CAy => Ac là tia phân giác ^HAy
b) xét tam giác AHB = ADB ( cạnh huyền- góc nhọn)
=> BD = HB và AH = AD (3)
Xét tam giác ACE = ACH ( cạnh huyền-góc nhọn)
=> CE = CH và AH = AE (4)
=> BD + CE = BH + CH =BC
Từ (3) và (4) => AE = AD
=> A là trung điểm DE
c) Xét tam giác EHD có AH là đường trung tuyến ứng với một cạnh
mà AH = AE =BC/2
=> tam giác EHD vuông tại H
=> HD vuông góc HE