Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 1 2 = z 1 và d 2 : x = 1 + t y = - 1 - t z = 2 Mặt phẳng chứa d 2 và song song với d 1 có phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Chọn B
Gọi (P) là mặt phẳng chứa hai đường thẳng d₁ và d₂
Khi đó (P) đi qua M (0;-1;0) và có cặp véctơ chỉ phương
Gọi là VTPT của (P). Khi đó
Phương trình (P): -8x+3y+2z+3=0
Gọi H là giao điểm của đường thẳng d₂ và (P):
Đường thẳng d đi qua H và có VTCP có phương trình:
Đáp án D.
Ta dễ thấy hai đường thẳng d và d ' song song.
Hai đường thẳng d và d ' lần lượt đi qua hai điểm M 5 ; 1 ; 5 và N 3 ; − 3 ; 1 và có vtcp u → = 2 ; − 1 ; 1 . Ta có M N → = − 2 ; − 4 ; − 4 .
Hai vecto M N → và u → không cùng phương và có giá nằm trên mặt phẳng P nên ta có vtpt của mặt phẳng P là n → = M N → ; u → .
Ta tìm tọa độ của n → bằng MTCT:
⇒ n → = − 8 ; − 6 ; 10
Mặt phẳng P có vtpt n → = − 8 ; − 6 ; 10 và đi qua M 5 ; 1 ; 5 nên có phương trình P : − 8 x − 5 − 6 y − 1 + 10 z − 5 = 0 ⇔ P : 4 x + 3 y − 5 z + 2 = 0 .Ta chọn D.
Đáp án A.
Đường thẳng d qua điểm M(2;-2;1) và có vectơ chỉ phương u → = ( - 3 ; 1 ; - 2 )
Đường thẳng d' qua điểm N(0;4;2) và có vectơ chỉ phương u ' → = 6 ; - 2 ; 4
Ta có - 3 6 = 1 - 2 = - 2 4 nếu u → , u ' → cùng phương. Lại có M 2 ; - 2 ; - 1
Vậy d ∥ d '
Đáp án B.
Ta có: Hai vector chỉ phương của hai đường thẳng là cùng phương nên hai đường thẳng luôn đồng phẳng.
Vector chỉ phương của đường thẳng d là u → = ( 1 ; - 2 ; - 1 )
Vector pháp tuyến của mặt phẳng
Phương trình mặt phẳng
Chọn A.
Gọi ∆ là đường thẳng cần tìm
Đường thẳng d có vecto chỉ phương a d → = 0 ; 1 ; 1
Ta có A(2;3;3); B(2;2;2)
∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương
Vậy phương trình của ∆ là