Cho hình chóp tứ giác S.ABCD có đáy là nửa lục giác đều nội tiếp đường tròn đường kính AD = 2a, SA ⊥ (ABCD). Tính khoảng cách giữa BD và SC.
A. 3 a 2 4
B. a 2 4
C. 5 a 2 12
D. 5 a 2 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a nên ta có: AD //BC và AB = BC = CD = a, đồng thời AC ⊥ CD, AB ⊥ BD, AC = BD = a√3.
Như vậy
Trong mặt phẳng (SAC) dựng AH ⊥ SC tại H ta có AH ⊥ CD và AH ⊥ SC nên AH ⊥ (SCD)
Vậy AH = d(A,(SCD))
Xét tam giác SAC vuông tại A có AH là đường cao, ta có:
Vậy A H 2 = 2 a 2 ⇒ A H = a 2
Gọi I là trung điểm của AD ta có BI // CD nên BI song song với mặt phẳng (SCD). Từ đó suy ra d(B, (SCD)) = d(I,(SCD)).
Mặt khác AI cắt (SCD) tại D nên
Do đó:
b) Vì AD // BC nên AD // (SBC), do đó d(AD, (SBC)) = d(A,(SBC))
Dựng AD ⊥ BC tại E ⇒ BC ⊥ (SAE)
Dựng AD ⊥ SE tại F ta có:
Vậy AF = d(A,(SBC)) = d(AD, (SBC))
Xét tam giác vuông AEB ta có:
Xét tam giác SAE vuông tại A ta có:
Chọn C
Từ giả thiết ta có AB=BC=CD=a
Kẻ AH ⊥ SC
Do AD là đường kính nên AC ⊥ CD và A C = A D 2 - C D 2 = a 3
Do SA ⊥ CD, AC ⊥ CD => CD ⊥ (SAC)=> CD ⊥ AH
=>AH ⊥ SC, AH ⊥ CD => AH ⊥ (SCD)
⇒ d A ( S C D ) = A H = A S . A C A S 2 + A C 2 = a 6 . a 3 3 a = a 2
Kéo dài AB cắt CD tại E. Dễ thấy B là trung điểm của AE.
⇒ d B , S C D d ( A , S C D ) = B E A E = 1 2 ⇒ d B , ( S C D ) = a 2 2
Đáp án A
Gọi H, K lần lượt là hình chiếu của B, C trên AD
Gọi α là góc giữa 2 mặt phẳng S A D , S B C
⇒ Δ S H K là hình chiếu của Δ S B C trên S A D ⇒ c o s α = S S H K S S B C
Ta có H K = B C = 2 a ⇒ S S H K = 1 2 S A . H K = a 3 .2 a 2 = a 2 3
Lại có d A ; B C = B H = a 3 ⇒ d S ; B C = a 3 . 2 = a 6
Suy ra S S B C = 1 2 d S ; B C . B C = a 3 6 .
Vậy c o s α = a 3 3 a 3 6 = 2 2
Chọn đáp án B
Trong (ABCD), kẻ Cx//BD => BD//(SCx)
Vì là nửa lục giác đều nên AB = BC = CD = a.
Và
Mặt khác:
Gọi
Ta có:
Trong (SAF), kẻ
Tam giác AFE có: AE = 3a và
Ta có: => tam giác SAF vuông cân tại A.
Vậy: