1,3mu2+3mu3+3mu4+...+3mu69+3mu70
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn đc
3^10 - 3 = 3(3^9 - 1) = 3.(19683-1) = 3.1514.13 chia hết cho 13
Ta có: \(3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
\(=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)
\(=\left(3+3^4+3^7\right).13\)chia hết cho 13
S = 1 + 3 + 3^2 + 3^3 + ... + 3^9
S = 1 x 1 + 3 x 1 + 3^2 x 1 + 3^2 x 3 + ... + 3^8 x 1 + 3^8 x 3
S = 1 x (1 + 3) + 3 x (1 + 3) + ... + 3^8 x (1 + 3)
S = 1 x 4 + 3 x 4 + ... + 3^8 x 4
S = 4 x (1 + 3 + ... + 3^8)\(⋮\)4
ta có (1+3)+(3^2+3^3)+...+(3^8+3^9)
=(1+3)+3^2x(1+3)+...+3^8x(1+3)
=4+3^2x4+...+3^8x4
=4x(3^2+...+3^8)
ta thấy 4 chia hết cho 4 nên S chia hết cho 4
kết luận S chia hết cho 4
x+y=xy <=> x+y-xy=0 <=> x(1-y) -1+y +1=0 <=> (x-1)(1-y)= -1
Nếu x,y không nguyên thì có vô số nghiệm cứ mỗi x thay vào sẽ có 1 y
Nếu x,y nguyên thì giải như sau
Từ (x-1)(1-y)= -1
Suy ra x-1, 1-y là các ước nguyên của -1
Suy ra có các trường hợp sau
x-1=1 <=> x=2
1-y=-1<=> y=2
và
x-1= -1 <=> x=0
1-y=1 <=> y=0
Vậy có 2 nghiệm là (x,y) = (2,2) và (0,0)
ta có:C=1+3+32+33+...+311
=(1+3+32)+(33+...+311)
=1.(1+3+32)+...+39.(1+3+32)
=1.13+...+39.13
=(1+...+39).13 chia hết cho 13
b.C=1+3+32+33+...+311
=(1+3+32+33)+(...+311)
=1.(1+3+32+33)+(...+311)
=1.(1+3+32+33)+...+38.(1+3+32+33)
=1.40+...+38.40
=(1+...+38).40 chia hết cho 40
`@` `\text {Ans}`
`\downarrow`
`3^4*5^2 - 128*2^3 + 1^17`
`= 9^2*5^2 - 2^7*2^3 + 1`
`= (9*5)^2 - 2^10+1`
`= 45^5-2^10 + 1`
`= 2025 - 1024 + 1`
`= 2025 - 1023`
`= 1002`
\(24-4^2\div4\cdot2+3\)
`= 24 - 4*2 + 3`
`= 24 - 8 + 3`
`= 24 - 5`
`= 19`
`@` `\text {Kaizuu lv u}.`
A=3+32 +33+...+3100
3A=32+33+34+...+3101
3A-A=3101-3
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3100 + 3101
3A - A = 3101 - 3
2A = 3101 - 3
A = ( 3101 - 3 ) : 2
Bạn tự tính kết quả nhé.
Học tốt.
A = 32 + 33 + 34 + ....+369 + 370
3A = 3(32 + 33 + .....+369 + 370)
3A = 33 + 34 + .... + 370 + 371
3A - A = 2A = (33 + 34 +.....+370 + 371) - (32 + 33 +....+369 + 370)
2A = 371 - 32
A = (371 - 32) : 2