K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

Đáp án B

21 tháng 7 2017

HD: Gọi H là tâm đường tròn ngoại tiếp ∆SBD

Bán kính đường tròn ngoại tiếp ∆SBD là

15 tháng 2 2017

Đáp án C

19 tháng 3 2018

Đáp án C

Ta có: SA = SB = SC =a

⇒ ∆ S B D   đ ề u

Gọi O là tâm hình thoi ABCD, I là tâm tam giác đều SBD cạnh a.

Vì AS = AB = AD

Dễ dàng tính được

Xét ∆ A I O vuông tại I có:

 

⇒ V A . S B D = 1 3 . A I . S S B D = a 2 3 12   (đvtt)

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:
Vì $(SAB), (SAD)$ cùng vuông góc với $(ABCD)$ mà $(SAB)\cap (SAD)\equiv SA$ nên $SA\perp  (ABCD)$

Vì $SA\perp (ABCD)$ nên $SA\perp CB$

Mà: $AB\perp CB$

$\Rightarrow CB\perp (SAB)$

$\Rightarrow \angle (SC,(ABCD))=\angle (SC, SB)=\angle CSB=45^0$

$\Rightarrow SB=CB=a$

$SA=\sqrt{SB^2-AB^2}=\sqrt{a^2-a^2}=0$ (vô lý)

 

8 tháng 3 2017

Đáp án A

16 tháng 8 2023

Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD). 

a, Vì tam giác SAD là tam giác vuông cân 

\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)

\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)

\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)

b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN. 

Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)

\(\Rightarrow MH\perp BC\)

mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)

Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc) 

Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)

6 tháng 10 2017

Đáp án C

là góc giữa hai mặt phẳng (SAD) và (ABCD). Do đó, ta có góc SAB = 600.

Tam giác SAB vuông tại B có SAB = 600  nên SB = AB.tan60 = 2a√3 

 

Vậy thể tích V của khối chóp S.ABCD là:

  V = 1 3 S A B C D . S B = 1 3 . 4 a 2 . 2 a 3 = 8 a 3 3 3

27 tháng 4 2019

Đáp án A

1 tháng 10 2019

Diện tích hình chữ nhật ABCD là 

Chọn C.