Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a có A B C ^ = 45 ° , ∆ SAD đều và (SAD) ⊥ (ABCD). Tính thể tích V của hình chóp.
A. V = a 3 2 6
B. V = a 3 6 12
C. V = a 3 3 8
D. V = a 3 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD: Gọi H là tâm đường tròn ngoại tiếp ∆SBD
Bán kính đường tròn ngoại tiếp ∆SBD là
Đáp án C
Ta có: SA = SB = SC =a
⇒ ∆ S B D đ ề u
Gọi O là tâm hình thoi ABCD, I là tâm tam giác đều SBD cạnh a.
Vì AS = AB = AD
Dễ dàng tính được
Xét ∆ A I O vuông tại I có:
⇒ V A . S B D = 1 3 . A I . S S B D = a 2 3 12 (đvtt)
Lời giải:
Vì $(SAB), (SAD)$ cùng vuông góc với $(ABCD)$ mà $(SAB)\cap (SAD)\equiv SA$ nên $SA\perp (ABCD)$
Vì $SA\perp (ABCD)$ nên $SA\perp CB$
Mà: $AB\perp CB$
$\Rightarrow CB\perp (SAB)$
$\Rightarrow \angle (SC,(ABCD))=\angle (SC, SB)=\angle CSB=45^0$
$\Rightarrow SB=CB=a$
$SA=\sqrt{SB^2-AB^2}=\sqrt{a^2-a^2}=0$ (vô lý)
Gọi M là trung điểm của AD. Suy ra SM vuông góc mặt phẳng (ABCD).
a, Vì tam giác SAD là tam giác vuông cân
\(\Rightarrow SA=SD=\dfrac{a}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}a\)
\(\Rightarrow SM=\sqrt{SA^2-AM^2}=\dfrac{1}{2}a\)
\(\Rightarrow V_{S.ABCD}=SM.S_{ABCD}=\dfrac{1}{2}a.a^2=\dfrac{1}{2}a^3\)
b, Qua M dựng đường thẳng MN song song với AB cắt BC tại N. Dựng MH vuông góc với SN.
Dễ dàng nhận thấy BC vuông góc với (SMN) do \(SM\perp BC;MN\perp BC\)
\(\Rightarrow MH\perp BC\)
mà \(MH\perp SN\Rightarrow MH\perp\left(SBC\right)\Rightarrow MH\perp SC\)
Hay MH chính là khoảng cách giữa AD và SC (Do cùng vuông góc)
Ta có: \(\dfrac{1}{MH^2}=\dfrac{1}{SM^2}+\dfrac{1}{MN^2}\Rightarrow\dfrac{1}{MH^2}=\dfrac{1}{\dfrac{1}{4}a^2}+\dfrac{1}{a^2}=\dfrac{5}{a^2}\Rightarrow MH=\dfrac{\sqrt{5}}{5}a\)
Đáp án C
là góc giữa hai mặt phẳng (SAD) và (ABCD). Do đó, ta có góc SAB = 600.
Tam giác SAB vuông tại B có SAB = 600 nên SB = AB.tan60 = 2a√3
Vậy thể tích V của khối chóp S.ABCD là:
V = 1 3 S A B C D . S B = 1 3 . 4 a 2 . 2 a 3 = 8 a 3 3 3
Đáp án B