K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

Đáp án B

13 tháng 3 2019

4 tháng 10 2017

9 tháng 4 2019

NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:

$\sin (2x+1)=\frac{-1}{2}$

$\Rightarrow 2x+1=\frac{-\pi}{6}+2k\pi$ hoặc $2x+1=\frac{7}{6}\pi +2k\pi$ với $k$ nguyên 

Với $2x+1=\frac{-\pi}{6}+2k\pi$

Do $x\in (0;\pi)$ nên $k=1$

$x=\frac{11}{12}\pi -\frac{1}{2}$

Với $2x+1=\frac{7\pi}{6}+2k\pi$

Do $x\in (0;\pi)$ nên $k=0$

$\Rightarrow x=\frac{7}{12}\pi -\frac{1}{2}$

30 tháng 10 2018

Chọn B

sin π x = cos π 3 + π x
⇔ cos π 2 − π x = cos π 3 + π x
⇔ π 3 + π x = π 2 − π x + k 2 π π 3 + π x = − π 2 + π x + k 2 π ( l )
⇔ 2 π x = π 6 + k 2 π

⇔ x = 1 12 + k

9 tháng 2 2017

Đáp án A

13 tháng 4 2017

Đáp án B

9 tháng 4 2017

Chọn C

1 tháng 11 2018