tổng n số tự nhiên đầu tiên có thể là một số chính phương không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng của n số tự nhiên chẵn đầu tiên khác 0 là :
\(2+4+6+...+2n\)
\(=2\left(1+2+3+...+n\right)\)
\(=2\cdot\frac{\left(1+n\right)\cdot n}{2}\)
\(=n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp
=> tổng của n số tự nhiên chẵn đầu tiên khác 0 không phải là số chính phương
Ta tính tổng n số lẻ đầu tiên:
S= 1+3+5+7+...+(2n-3)+(2n-1)
=> ta có 2 trường hợp sau:
TH1: n chẵn:
S=(1+2n-1)+(3+2n-3)+... có n/2 số hạng, mà mỗi số hạng có giá trị là 2n
Vậy S= 2n= n^2
TH2: n lẻ:
Để tính S ta cũng ghép như trường hợp trên nhưng ta đc số hạng ,mỗi số hạng có giá trị là 2n:
=> Tổng S= 2n+n=n^2
Vậy S= 1+3+5+7+...+(2n-3)+(2n-1)= n^2 nên S là 1 số chính phương.
Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương
Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương
Tick choa mik cái nào
Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương
Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương
Tổng: 1+2+3+4+...+n=\(\frac{n\left(n+1\right)}{2}\), vì (n,n+1)=1 nên \(\frac{n\left(n+1\right)}{2}\)không chính phương.
bạn Ha Trang không viết số không à bạn