Một cano xuôi dòng 1km và ngược dòng 1km hết tất cả 3,5 phút . Nếu cano đi xuôi 20km và ngược 15km thì hết 1 giờ . Tính vận tốc dòng nước và vận tốc riêng của cano ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)
Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h.
~Học tốt!~
Gọi vận tốc của cano và vận tốc dòng nước lần lượt là \(x,y\left(km/h\right),x>y>0\).
Vận tốc xuôi dòng là: \(x+y\left(km/h\right)\)
Vận tốc ngược dòng là: \(x-y\left(km/h\right)\)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)
Đặt \(a=\frac{1}{x+y},b=\frac{1}{x-y}\)
\(\hept{\begin{cases}5a+9b=1\\10a+6b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{20}\\b=\frac{1}{12}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\)(thỏa mãn)
Gọi vận tốc riêng canô, dòng nước lần lượt là x ; y ( x > y > 0, km/h )
khi đó vân tốc canô đi xuôi dòng là x + y km/h
vận tốc dòng nước đi ngược dòng là x - y km/h
*) Nếu canô xuôi dòng 5km và ngược dòng 9km hết 1 giờ
ta có pt : \(\frac{5}{x+y}+\frac{9}{x-y}=1\)(1)
*) Nếu canô xuôi dòng 10km và ngược dòng 6km hết 1 giờ
ta có pt : \(\frac{10}{x+y}+\frac{6}{x-y}=1\)(2)
Từ (1) ; (2) ta có hệ pt \(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x+y}=t\\\frac{1}{x-y}=u\end{cases}}\)ta có hệ mới \(\hept{\begin{cases}5t+9u=1\\10t+6u=1\end{cases}\Leftrightarrow\hept{\begin{cases}t=\frac{1}{20}\\u=\frac{1}{12}\end{cases}}}\)
Theo cách đặt \(\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}2y=8\\x=y+12\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=16\end{cases}}}\)(tm)
Vậy vận tốc canô là 16 km/h
vận tốc dòng nước là 4 km/h
1. gọi vận tốc dòng nước là v, thoi gian di xuoi la 44/20+v thoigian di nguoc la 27/20-v ta co pt;
44/20+v + 27/20-v = 3h30p = 3,5
v = 2km/h
bai 2 chị tự làm đi, nếu k lamdc 1h nua em lam
gọi vận tốc cano và dòng nước lần lượt là x,y ( ĐK: x, y > 0 )
vận tốc thực của cano khi xuôi dòng : x+ y
vận tốc thực của ca nô khi ngược dòng : x-y
tổng thời gian ca no đi xuôi 84 km và ngược dòng 44 km là 5h nên ta có pt:
\(\frac{84}{x+y}\) + \(\frac{44}{x-y}\) = 5
tương tự với giả thiết còn lại, ta có : \(\frac{112}{x+y}+\frac{110}{x-y}=9\)
Như vậy ta có hệ pt :.... ( bạn biết phải không ? )
đặt ẩn phụ cho \(\frac{1}{x+y}\) và \(\frac{1}{x-y}\) , ta có hệ pt thứ 2 là : x+y = 28 và x-y = 22 <=> x =25 và y =3
Vậy ....
Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)
Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)
Cano đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được 380 km nên ta có phương trình: 3 (x + y) + 4 (x – y) = 380
Cano xuôi dòng trong 1 giờ và ngược dòng trong 30 phút được 85 km nên ta có phương trình: x + y + 1 2 ( x – y ) = 85
Ta có hệ phương trình:
3 x + y + 4 x − y = 380 x + y + 1 2 x − y = 85 ⇔ 7 x − y = 380 3 x + y = 170 ⇔ 10 x = 550 3 x + y = 170 ⇔ x = 55 y = 5
(thỏa mãn)
Vậy vận tốc dòng ngước là 5 km/h
Đáp án: A
hệ: \(\left\{{}\begin{matrix}\dfrac{63}{x+y}+\dfrac{30}{x-y}=5\\\dfrac{42}{x+y}+\dfrac{45}{x-y}=5\end{matrix}\right.\) giải hệ tìm x và y
Trong đó x là vận tốc của ca nô
y là vận tốc của dòng nước
xuôi dòng x+y ngược dòng x-y