K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

hệ: \(\left\{{}\begin{matrix}\dfrac{63}{x+y}+\dfrac{30}{x-y}=5\\\dfrac{42}{x+y}+\dfrac{45}{x-y}=5\end{matrix}\right.\) giải hệ tìm x và y

Trong đó x là vận tốc của ca nô 

y là vận tốc của dòng nước 

xuôi dòng x+y ngược dòng x-y 

Trả lời:

Gọi vận tốc cano là x (km/h), vận tốc dòng nước là y (km/h)
Khi cano xuôi dòng:
12/(x+y) + 12/(x-y) = 2,5 (1)

Khi cano xuôi dòng 4km và ngược dòng 8km:
4/(x+y) + 8/(x-y) = 4/3 (2)
Từ (1) và (2) => 1/(x+y) = 1/12 và 1/(x-y) = 1/8
=> x+y =12 và x-y =8
=> x = (12+8)/2 =10
y =x-8 =2
Vận vận tốc cano là 10 km/h, vận tốc dòng nước là 2 km/h.

~Học tốt!~

3 tháng 4 2020

Bạn ơi mk rất nghi ngờ bạn đã gian nận. Vì mk ko tin bài làm của bn lại giống y sì đúc những bài  tương tự trước đó. Vìnếu bạn làm điều đó thật thì bn nên hãy xem lại ý thức của mk và sửa ngay nhé .:")

20 tháng 2 2021

Gọi vận tố cano là x (km/h)  (x>y>0)

        Vận tốc dòng nước là y (km/h) 

Vận tốc cano khi xuôi dòng là x+y (km/h)

Vận tốc cano khi ngược dòng là x-y (km/h)

Thời gian cano đi khi xuôi dòng lần đầu là \(\frac{108}{x+y}\)(h)

Thời gian cano đi khi ngược dòng lần đầu là  \(\frac{63}{x-y}\)(h)

Theo đề bài ta có PT :  \(\frac{108}{x+y}+\frac{63}{x-y}=7\)               (1)

Thời gian cano đi khi xuôi dòng lần 2 là \(\frac{81}{x+y}\)(h)

Thời gian cano đi khi ngược dòng lần 2 là  \(\frac{84}{x-y}\)(h)

Theo đề bài ta có PT:   \(\frac{81}{x+y}+\frac{84}{x-y}=7\)                      (2)

Từ (1) và (2) ta có hệ PT :

 \(\frac{108}{x+y}+\frac{63}{x-y}=7\)

\(\frac{81}{x+y}+\frac{84}{x-y}=7\)

Tự giải tiếp nha. Giải = cách đặt ẩn phụ rồi thay vào là OK

10 tháng 2 2020

giải giúp với :>

DD
8 tháng 12 2021

Gọi vận tốc của cano và vận tốc dòng nước lần lượt là \(x,y\left(km/h\right),x>y>0\).

Vận tốc xuôi dòng là: \(x+y\left(km/h\right)\)

Vận tốc ngược dòng là: \(x-y\left(km/h\right)\)

Ta có hệ phương trình: 

\(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)

Đặt \(a=\frac{1}{x+y},b=\frac{1}{x-y}\)

\(\hept{\begin{cases}5a+9b=1\\10a+6b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{20}\\b=\frac{1}{12}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\)(thỏa mãn) 

26 tháng 5 2022

cái này là bài cấp 1 thầy/cô ơi

 

7 tháng 12 2021

Gọi vận tốc riêng canô, dòng nước lần lượt là x ; y ( x > y > 0, km/h ) 

khi đó vân tốc canô đi xuôi dòng là x + y km/h

vận tốc dòng nước đi ngược dòng là x - y km/h 

*) Nếu canô xuôi dòng 5km và ngược dòng 9km hết 1 giờ 

ta có pt : \(\frac{5}{x+y}+\frac{9}{x-y}=1\)(1) 

*) Nếu canô xuôi dòng 10km và ngược dòng 6km hết 1 giờ 

ta có pt : \(\frac{10}{x+y}+\frac{6}{x-y}=1\)(2) 

Từ (1) ; (2) ta có hệ pt \(\hept{\begin{cases}\frac{5}{x+y}+\frac{9}{x-y}=1\\\frac{10}{x+y}+\frac{6}{x-y}=1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x+y}=t\\\frac{1}{x-y}=u\end{cases}}\)ta có hệ mới \(\hept{\begin{cases}5t+9u=1\\10t+6u=1\end{cases}\Leftrightarrow\hept{\begin{cases}t=\frac{1}{20}\\u=\frac{1}{12}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+y=20\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}2y=8\\x=y+12\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=16\end{cases}}}\)(tm) 

Vậy vận tốc canô là 16 km/h

vận tốc dòng nước là 4 km/h