Cho hàm số y = f(x) có đạo hàm f'(x) = x 4 + 3 x 3 - 3 x 2 + 3 x - 4 với mọi x ∈ ℝ . Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [-4;2] là
A. f(0)
B. f(-4)
C. f(1)
D. f(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f ' ( x ) = x ( x + 1 ) ( x - 2 ) 2 = 0 ⇔ [ x = 0 x = - 1 x = 2
với x=2 là nghiệm kép.
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta thấy hàm số đạt giá trị nhỏ nhất trên đoạn [-1;2] tại x=0.
Chọn đáp án B.
Phương trình f '(x) = 0 có nghiệm x = m, x = -3, x = -1 .
Dễ thấy -3 < -1 < 0 nên hàm số y = f x có 3 điểm cực trị
hàm số y = f (x) phải có điểm cực trị
x = m > 0
nên m ∈ {1; 2;3; 4;5}.
Chọn C.
Chọn D
Từ đồ thị của hàm số y = f'(x) ta suy ra bảng biến thiên của hàm số y = f(x) trên đoạn như sau:
Từ bảng biến thiên, ta có nhận xét sau:
Ta lại có: f(0) + f(1) - 2f(2) = f(4). - f(3)
Chọn B
Ta có:
biến thiên của hàm số f(x) trên đoạn [0;4]
Nhìn vào bảng biến thiên ta thấy
Ta có f(2) + f(4) = f(3) + f(0) ⇔ f(0) - f(4) = f(2) - f(3) > 0.
Suy ra: f(4) < f(0). Do đó
Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).
Chọn C