K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

76

tick nhé

14 tháng 11 2016

n chỉ bằng 2 thôi

14 tháng 11 2016

cậu giải chi tiết ra được ko 

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:
Để $p=(n+4)(2n-1)$ là snt thì 1 trong 2 thừa số của nó bằng $1$ và thừa số còn lại là snt.

Hiển nhiên $n+4>1$ với mọi $n$ tự nhiên.

$\Rightarrow 2n-1=1\Rightarrow n=1$

Khi đó: $p=5.1=5$ là snt (thỏa mãn)

28 tháng 12 2017

P= n.(4-n) de p la so nguyen to 

Ta co: n.(4-n) co uoc la 1

Đê h trên la sô nguyên tô thi n=1

+)  Vơi n=1 thi n.(n-4)= 3 la sô nguyên tô

+)  Vơi 4-n= 1→ n = 3thi n.(4-n)=3 la sô nguyên tô

Vây P la sô nguyên tô khi n=1 hoăc n =3

°○☆○°

Đung nhơ k cho tơ đây Phương ♧☆♡

28 tháng 12 2017

Dong thư 3 mk viêt  nhâm

Đê "h" chư k phai la "h"

nha

17 tháng 8 2016

a) Xét \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)

Để p/s trên đạt giá trị nguyên thì (n+1) thuộc ư(3)

Bạn tự liệt kê

b) Đặt \(A=\left(n-1\right)\left(n^2+2n+3\right)\)

Vì A là số nguyên tô nên A chỉ có hai ước là 1 và chính nó

Suy ra các trường hợp : \(\begin{cases}n-1=1\\n^2+2n+3=A\end{cases}\) hoặc \(\begin{cases}n-1=A\\n^2+2n+3=1\end{cases}\)

Suy ra n = 2 thỏa mãn đề bài

17 tháng 8 2016

a)n + 4 chia hết cho n + 1

=> n + 1 + 3 chia hết cho n + 1

Do n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1

Mà \(n\in N\Rightarrow n+1\ge1\)

=> \(n+1\in\left\{1;3\right\}\)

=> \(n\in\left\{0;2\right\}\)

b) Ta đã biết số nguyên tố chỉ có 2 ước duy nhất là 1 và chính nó

Mà \(n^2+2n+3\ge3\) với mọi n là số tự nhiên

=> n - 1 = 1; n2 + 2n + 3 là số nguyên tố

=> n = 2

Thử lại ta thấy: n2 + 2n + 3 = 22 + 2.2 + 3 = 11, là số nguyên tố, thỏa mãn

Vậy n = 2