K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

Chọn đáp án A.

Có ycbt

22 tháng 4 2016

ai làm có thưởng 2điem

31 tháng 12 2023

TH1: Lấy \(x_1;x_2\in R\) sao cho \(0< x_1< x_2\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=a\cdot\left(x_1+x_2\right)\)>0 vì \(x_1+x_2>0;a>0\)

=>Hàm số y=f(x)=ax2 đồng biến khi x>0 nếu a>0

TH2: Lấy \(x_1;x_2\in R^+;0< x_1< x_2\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1-x_2}\)

\(=a\left(x_1+x_2\right)< 0\)(vì x1+x2>0 và a<0)

=>Hàm số nghịch biến khi x>0

TH3: Lấy \(x_1;x_2\in R^-\) sao cho \(x_1< x_2< 0\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1-x_2}\)

\(=a\left(x_1+x_2\right)>0\) vì a<0 và x1+x2<0

=>Hàm số đồng biến khi x<0

 

1, hàm số y=(-3m+2) x2 đồng biến khi x<0 và nghịch biến khi x>0 vớia,\(m\ge\dfrac{2}{3}\)           b, \(m< \dfrac{2}{3}\)            c,\(m=\dfrac{2}{3}\)             d, \(m>\dfrac{2}{3}\) 2, cho công thức nghiệm tổng quát của pt x+2y=0a,\(\left\{{}\begin{matrix}x\in R\\y=\dfrac{x}{2}\end{matrix}\right.\)         b, \(\left\{{}\begin{matrix}x\in R\\y=\dfrac{-x}{2}\end{matrix}\right.\)      c, \(\left\{{}\begin{matrix}x\in R\\x=\dfrac{-y}{2}\end{matrix}\right.\)       d, \(\left\{{}\begin{matrix}x\in R\\y=-2x\end{matrix}\right.\)3, tổng có...
Đọc tiếp

1, hàm số y=(-3m+2) x2 đồng biến khi x<0 và nghịch biến khi x>0 với
a,\(m\ge\dfrac{2}{3}\)           b, \(m< \dfrac{2}{3}\)            c,\(m=\dfrac{2}{3}\)             d, \(m>\dfrac{2}{3}\)
 2, cho công thức nghiệm tổng quát của pt x+2y=0
a,\(\left\{{}\begin{matrix}x\in R\\y=\dfrac{x}{2}\end{matrix}\right.\)         b, \(\left\{{}\begin{matrix}x\in R\\y=\dfrac{-x}{2}\end{matrix}\right.\)      c, \(\left\{{}\begin{matrix}x\in R\\x=\dfrac{-y}{2}\end{matrix}\right.\)       d, \(\left\{{}\begin{matrix}x\in R\\y=-2x\end{matrix}\right.\)
3, tổng có nghiệm của pt 5x4-9x2+4 =0 bằng
a,\(\dfrac{4}{5}\)                    b, 9                   c, 0                 d, \(\dfrac{9}{5}\)
4, 2 hệ pt \(\left\{{}\begin{matrix}kx+3y=2\\-x+y=1\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x+y=3\\x-y=-1\end{matrix}\right.\) là tương đương khi k bằng 
a, 3              b, -4                    c, \(\dfrac{-1}{2}\)             d, -3

2

Câu 1: D

Câu 2: B

Câu 3: C

Câu 4: C

 

4 tháng 2 2022

1.D

2.B

3.C

4.B

27 tháng 5 2018

Đáp án A

Phương pháp:

Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.

Cách giải:

*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và  f c 2

*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số  y = x 3

*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.

Chú ý khi giải:

HS thường nhầm lẫn:

- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.

- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

3 tháng 12 2018

Theo giả thiết ta có

Hàm số y = g x  đồng biến trên   0 ; π 2

Chọn A. 

a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0

\(\Leftrightarrow2m< 1\)

hay \(m< \dfrac{1}{2}\)

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

NV
14 tháng 4 2020

a/ Để hàm số đồng biến khi x>0

\(\Leftrightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)

b/ Để hàm số nghịch biến khi x>0

\(\Leftrightarrow4m^2-9< 0\Leftrightarrow-\frac{3}{2}< m< \frac{3}{2}\)

c/ Để hàm số đồng biến khi x<0

\(\Leftrightarrow m^2-3m< 0\Leftrightarrow0< m< 3\)

d/ Do \(m^2-2m+3=\left(m-1\right)^2+2>0\) ;\(\forall m\)

\(\Rightarrow\) Hàm số đồng biến khi x>0 với mọi m