Biết số phức z thỏa mãn điều kiện 3 ≤ z - 3 i + 1 ≤ 5 . Tập hợp các điểm biểu diễn của z tạo thành một hình phẳng. Diện tích của hình phẳng đó bằng
A. 16 π
B. 4 π
C. 9 π
D. 25 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi M là điểm biểu diễn của số phức z. Xét điểm A(-1;3) thì theo điều kiện, ta có:
Vậy tập hợp các điểm biểu diễn z là phần hình phẳng nằm giữa 2 đường tròn tâm A, bán kính lần lượt là 3 và 5
Đáp án D.
Gọi M là điểm biểu diễn của số phức z. Xét điểm A − 1 ; 3 thì theo điều kiện, ta có: 3 ≤ z − 3 i + 1 ≤ 5 ⇔ 3 ≤ A M ≤ 5. Vậy tập hợp các điểm biểu diễn z là phần hình phẳng nằm giữa 2 đường tròn tâm A, bán kính lần lượt là 3 và 5
⇒ S = π 5 2 − 3 3 = 16 π .
Đáp án D.
Gọi M là điểm biểu diễn của số phức z. Xét điểm A(-1;3) thì theo điều kiện, ta có
Vậy tập hợp các điểm biểu diễn z là phần hình phẳng nằm giữa 2 đường tròn tâm A, bán kính lần lượt là 3 và 5
Chọn C.
Giả sử w = x + yi , khi đó ( 1) tương đương ( x - 7) 2+ ( y + 9) 2 ≤ 16
Suy ra tập hợp điểm biểu diễn số phức w là hình tròn tâm I(7; -9), bán kính r = 4
Vậy diện tích cần tìm là S = π.42 = 16π.
Đáp án A.
Đặt z = x + y i , x , y ∈ ℝ .
Ta có z - 3 i - 1 = ( x - 1 ) + ( y - 3 ) i = x - 1 2 + y - 3 2
Do đó 3 ≤ z - 3 i + 1 ≤ 5 ⇔ 9 ≤ x - 1 2 + y - 3 2 ≤ 25
Suy ra tập hợp các điểm biểu diễn của z là hình phẳng nằm trong đường tròn tâm I(1;3) bán kính R = 5 đồng thời nằm ngoài đường tròn tâm I(1;3) bán kính r = 3.
Diện tích của hình phẳng đó (phần tô màu) là S = π . 5 2 - π . 3 2 = 16 π (đvdt).