K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

0:4=0    16+0=16

vậy đáp án là 16

14 tháng 3 2015

Ta phải làm nhân chia trước cộng trừ sau.

Ta trình bày như sau:

16+0:4

=16+0

=16

10 tháng 5 2017

a)\(sin^4\dfrac{\pi}{16}+sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}+sin^4\dfrac{7\pi}{16}\)
\(=\left(sin^4\dfrac{\pi}{16}+sin^4\dfrac{7\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}\right)\)
\(=\left(sin^4\dfrac{\pi}{16}+cos^4\dfrac{\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+cos^4\dfrac{3\pi}{16}\right)\)
\(=1-2sin^2\dfrac{\pi}{16}cos^2\dfrac{\pi}{16}+1-2sin^2\dfrac{3\pi}{16}cos^2\dfrac{3\pi}{16}\)
\(=2-\dfrac{1}{2}sin^2\dfrac{\pi}{8}-\dfrac{1}{2}sin^2\dfrac{3\pi}{8}\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+sin^2\dfrac{3\pi}{8}\right)\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+cos^2\dfrac{\pi}{8}\right)\)
\(=2-\dfrac{1}{2}=\dfrac{3}{2}\).

10 tháng 5 2017

Có: \(cotx-tanx=\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=\dfrac{cos^2x-sin^2x}{sinxcosx}=\dfrac{2cos2x}{sin2x}\)
Vì vậy:
\(cot7,5^o+tan67,5^o-tan7,5^o-cot67,5^o\)
\(=\left(cot7,5^o-tan7,5^o\right)-\left(cot67,5^o-tan67,5^o\right)\)
\(=\dfrac{2cos15^o}{sin15^o}-\dfrac{2cos135^o}{sin135^o}\)
\(=2\left(\dfrac{cos15^osin135^o-sin15^ocos135^o}{sin15^osin135^o}\right)\)
\(=2.\dfrac{sin120^o}{\dfrac{1}{2}\left(cos120^o-cos150^o\right)}\)
\(=\dfrac{4.\dfrac{\sqrt{3}}{2}}{\dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}\)

28 tháng 10 2017

1-2-3-4-...-1 0000...0 hơi sai sai. Số bé làm sao trừ được số lớn, lớp 5 cũng chưa học số âm?

2 tháng 3 2020
https://i.imgur.com/gxCqrM4.jpg
6 tháng 7 2019

24 tháng 10 2021

Áp dụng BĐT Bunhiacopski:

Đặt \(A=x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\)

\(\Leftrightarrow A^2=\left[x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\right]^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)\\ \Leftrightarrow A^2\le16\cdot16=256\\ \Leftrightarrow A\le16\\ A_{max}=16\Leftrightarrow\dfrac{x^2}{16-x^2}=\dfrac{16-y}{y}\Leftrightarrow x^2y=256-16y-16x^2+x^2y\\ \Leftrightarrow16x^2+16y-256=0\\ \Leftrightarrow x^2+y-16=0\\ \Leftrightarrow x^2=16-y\Leftrightarrow x=\sqrt{16-y}\)

9 tháng 9 2018

1) \(2x^4+3x^3-x^2+3x+2=0\)

\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)

\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)

\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)

Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x

\(\Rightarrow x^2-x+1\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

9 tháng 9 2018

3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)

Đặt x + 3 = a, ta được

\(\left(a-1\right)^4+\left(a+1\right)^4=16\)

\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)

\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)

\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)

\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)

\(\Rightarrow2a^4+8a^2+4a^2+2=16\)

\(\Rightarrow2a^4+12a^2+2-16=0\)

\(\Rightarrow2a^4+12a^2-14=0\)

\(\Rightarrow2a^4-2a^2+14a^2-14=0\)

\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)

\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)

\(a^2\ge0\) với mọi a

\(\Rightarrow a^2+7\ge7\) với mọi a

\(\Rightarrow a^2+7\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

22 tháng 9 2023

a)

\(9^{16-x}=27^{x+4}\\ \Leftrightarrow3^{2.\left(16-x\right)}=3^{3.\left(x+4\right)}\\ \Leftrightarrow2.\left(16-x\right)=3.\left(x+4\right)\\ \Leftrightarrow32-2x-3x-12=0\\ \Leftrightarrow-5x=-20\Leftrightarrow x=4\)

b)

\(16^{x-2}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4\left(x-2\right)}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4x-8+x-4}=0,25\\ \Leftrightarrow2^{5x-12}=0,25\Leftrightarrow5x-12=\log_20,25\\ \Leftrightarrow5x-12=-2\\ \Leftrightarrow x=2\)

7 tháng 7 2016

1)\(\left(x-280\right):35=56.5\)

\(\left(x-280\right):35=280\)

\(x-280=280.35\)

\(x-280=9800\)

\(x=9800+280\)

\(x=10080\)

2) \(\left(x-128+20\right):192=0\)

\(\Rightarrow\left(x-148\right):192=0\)

\(\Rightarrow x-148=0\)

\(\Rightarrow x=0+148\)

\(\Rightarrow x=148\)

3) \(460+85.4=\left(x+200\right).4\)

\(\Rightarrow\left(x+200\right).4=460+340\)

\(\Rightarrow\left(x+200\right).4=800\)

\(\Rightarrow x+200=800:4=200\)

\(\Rightarrow x+200=200\)

\(\Rightarrow x=200-200=0\)

4) \(x+5.2-\left(32+16.3:16-15\right)=0\)

\(\Rightarrow x+10-\left(32+3-15\right)=0\)

\(\Rightarrow x+10-20=0\)

\(\Rightarrow x+10=20\)

\(\Rightarrow x=20-10=10\)

nha m.n