Cho hình vuông ABCD độ dài cạnh a có tâm O. Điểm M là 1 điểm di chuyển trên BC(M≠B,M≠C). Gọi N là giao điểm của tia AM và đường thẳng CD. G là giao của DM và BN.
a) CMR: \(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\) không đổi
b) CM: CG⊥AN
c) Gọi H là giao của OM và BN. Tìm vị trí của M để \(S_{HAD}\) lớn nhất