K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

1 tháng 7 2021

a)\(-1\le sinx\le1\)

\(\Leftrightarrow1\ge-sinx\ge-1\)

\(\Leftrightarrow4\ge3-sinx\ge2\) \(\Leftrightarrow16\ge\left(3-sinx\right)^2\ge4\)\(\Leftrightarrow17\ge\left(3-sinx\right)^2+1\ge5\)

\(\Leftrightarrow17\ge y\ge5\)

\(y_{min}=5\Leftrightarrow sinx=1\)\(\Leftrightarrow\)\(x=\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

\(y_{max}=17\Leftrightarrow\)\(sinx=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)\(\left(k\in Z\right)\)

b)\(y=\left(sin^2x+cos^2x\right)^2-2.sinx^2cos^2x\)\(=1-\dfrac{1}{2}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{1}{2}.sin^22x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow1\ge1-\dfrac{1}{2}.sin^22x\ge\dfrac{1}{2}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{2}\)

\(y_{min}=\dfrac{1}{2}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=-1\\sin2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

c)\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1-3sin^2x.cos^2x=1-\dfrac{3}{4}.sin^22x\)

Có \(0\le sin^22x\le1\)\(\Leftrightarrow0\ge-\dfrac{3}{4}.sin^22x\ge-\dfrac{3}{4}\)

\(\Leftrightarrow1\ge1-\dfrac{3}{4}.sin^22x\ge\dfrac{1}{4}\)\(\Leftrightarrow1\ge y\ge\dfrac{1}{4}\)

\(y_{min}=\dfrac{1}{4}\Leftrightarrow sin^22x=1\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(y_{max}=1\Leftrightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\)\(\left(k\in Z\right)\)

Vậy...

1 tháng 7 2021

a, Đặt \(t=sinx\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=\left(3-t\right)^2+1=t^2-6t+10\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(1\right)=5\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(1\right)\right\}=f\left(-1\right)=17\)

b, \(y=sin^4x+cos^4x=1-2sin^2x.cos^2x=1-\dfrac{1}{2}sin^22x\)
Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{1}{2}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{2}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

c, \(y=sin^6x+cos^6x\)

\(=sin^4x+cos^4x-sin^2x.cos^2x\)

\(=1-3sin^2x.cos^2x\)

\(=1-\dfrac{3}{4}sin^22x\)

Đặt \(t=sin2x\left(t\in\left[-1;1\right]\right)\)

\(y=f\left(t\right)=1-\dfrac{3}{4}t^2\)

\(\Rightarrow min=min\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=\dfrac{1}{4}\)

\(\Rightarrow max=max\left\{f\left(-1\right);f\left(0\right);f\left(1\right)\right\}=1\)

31 tháng 8 2016

a)y=2cos(x+π/3)

-1<=cos(x+π/3)<=1

<=>-2<=2cos(x+π/3)<=2

--->min=-2,max=2

31 tháng 8 2016

không có điều kiện hả bạn ?

24 tháng 9 2021

\(sin\left(\dfrac{\pi}{3}+x\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{3}{2}+sin\left(\dfrac{\pi}{3}+x\right)\in\left[\dfrac{1}{2};\dfrac{5}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{1}{2}\\y_{max}=\dfrac{5}{2}\end{matrix}\right.\)

12 tháng 2 2019

5 tháng 9 2016

a) \(y=\sqrt{1-sin\left(x^2\right)}-1\)  đạt giá trị lớn nhất là 1 , giá trị nhỏ nhất là - 1 ( để ý rằng u = x + \(\frac{\pi}{3}\) lấy mọi giá trị thực tùy ý khi x thay đổi ) , nên hàm số y = 2cos \(\left(x+\frac{\pi}{3}\right)\) + 3 đạt giá trị lớn nhất là y = 2 . 1 + 3 = 5 , giá trị nhỏ nhất là y = 2 . ( - 1 ) + 3 = 1

b) Hàm số y = 4sin |x| = đạt giá trị lớn nhất là 4 ( khi sin | x | = 1 tức là | x | = \(\frac{\pi}{2}\) + 2k\(\pi\) , k nguyên không âm ) , đạt giá trị nhỏ nhất - 4 ( khi sin | x | = \(-\frac{\pi}{2}+2k\pi\) , k nguyên dương )