K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

NV
12 tháng 12 2020

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)

loading...  loading...  

21 tháng 3 2023

Thanks you

12 tháng 12 2020

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

13 tháng 12 2020

C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi

23 tháng 4 2023

1D; 2B; 3D

23 tháng 12 2016

1) 216

15 tháng 6 2017

Ta có (x-2y)4 =[x+(-2y)]4=C4k.x4-k.(-2y)k

Hệ số của số hạng có xy3 ứng với : 4-k=1 va k=3 <=> k=3

Vậy hệ số của xy3 là : C43.(-2)3=-32

12 tháng 2 2017

31 tháng 10 2019

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

NV
5 tháng 11 2019

\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)

Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)

\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)

\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)

Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)

\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)

\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)

Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)

Hệ số: \(C_6^42^4\left(-1\right)^2=240\)