K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Đặt t = 2 nên dt = 2dx.

Đổi cận: x = 1 nên t = 2; x = 3 nên t = 6

F x = ∫ sin x x d x ⇒ F u = ∫ sin u u d u ∫ 1 3 sin 2 x x d x = ∫ 1 3 2 sin 2 x 2 x d x ⇒ ∫ 1 3 sin 2 x x d x = ∫ 2 6 sin u u d u = F 6 - F 2

Đáp án B

22 tháng 10 2019

Đáp án B

5 tháng 10 2018

Đáp án C

6 tháng 10 2017

Chọn B

4 tháng 3 2019

Có 

Chọn đáp án A.

14 tháng 4 2017

 

Chọn đáp án A.

22 tháng 9 2017

Đáp án C

7 tháng 8 2018

f ( x ) = 4 x - 1 ⇒ F ( x ) = ∫ f ( x ) d x = 2 x 2 - x + C

Phương trình hoành độ giao điểm của đồ thị hàm số F(x) và f(x) là:

2 x 2 - x + C = 4 x - 1 ⇔ 2 x 2 - 5 x + C + 1 = 0 ( * )

Do hai đồ  thị hàm số trên cắt nhau tại một điểm trên trục tung nên x=0 là nghiệm của (*)

⇔ C + 1 = 0 ⇔ C = - 1

Với C=-1: Phương trình(*)

⇔ 2 x 2 - 5 x = 0 ⇔ [ x = 0 x = 5 2

Tọa độ các điểm chung của hai đồ thị hàm số trên là: (0;-1) và 5 2 ; 9            

Chọn đáp án C.

26 tháng 6 2017

Phương pháp:

+) Sử dụng các công thức nguyên hàm cơ bản

xác định hàm số F(x).

+) Giải phương trình hoành độ giao điểm.

Cách giải:  

Phương trình hoành độ giao điểm của

đồ thị hàm số F(x) và f(x) là :

 

Do hai đồ  thị hàm số trên cắt nhau tại một

điểm trên trục tung nên x=0 là nghiệm của (*)

Tọa độ các điểm chung của hai đồ thị

hàm số trên là: