Một nhà máy cần sản suất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp giải: Chuẩn hóa thể tích, đưa diện tích toàn phần về hàm số, khảo sát hàm (hoặc bất đẳng thức) tìm min
Lời giải:
Thể tích của khối trụ là
Chuẩn hóa
Diện tích toàn phần của hình trụ là
Dấu bằng xảy ra khi và chỉ khi
Đáp án B.
Ta có:
Xét hàm số
(V là hằng số)
Bảng biến thiên:
Đáp án B.
Ta có: V = π R 2 h ⇒ h = V π R 2 (1)
S x q = 2 π R h = 2 π . R . V π R 2 = 2 V R ; S t p = S x q + 2 S đ = 2 V R + 2 π R 2
Xét hàm số f R = 2 V R + 2 π R 2 (V là hằng số)
f ' R = − 2 V R 2 + 4 π R = 0 ⇔ R = V 2 π 3
Bảng biến thiên:
⇒ S t p min = f R min ⇔ R = V 2 π 3 ⇒ v = 2 π R 3
Từ (1)
⇒ h = V π R 2 = 2 π R 3 π R 2 = 2 R ⇒ h R = 2
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Đáp án D
Ta có V t = V = l . π R 2 ⇒ l = V π R 2
S t = l .2 π R + 2 π R 2 ⇒ S t = V π R 2 π R + 2 π R 2 = 2 ( π R 2 + V R )
S t = 2 ( π R 2 + V 2 R + V 2 R ) ≥ 2.3 π R 2 . V 2 R . V 2 R 3 = 6 π V 2 4 3
Dấu “=” xảy ra khi và chỉ khi π R 2 = V 2 R ⇔ R = V 2 π 3