K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left(x^2-2x\right)^2-6x^2+12x+9=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)

\(\Leftrightarrow\left(x^2-2x-3\right)^2=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: S={3;-1}

b) Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+5\left(x^2+x\right)-2\left(x^2+x\right)-10=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+5\right)-2\left(x^2+x+5\right)=0\)

\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow x^2+x-2=0\)(Vì \(x^2+x+5>0\forall x\))

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

Vậy: S={-2;1}

5 tháng 1 2021

2 ý a và b anh CTV nãy đã làm rồi nha, còn câu c này thì làm dài dòng+không chắc :VVV

c)\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)-9x^2=0\)

\(\Leftrightarrow\left(2x^2-3x+1\right)\left(2x^2-3x+1+8x\right)-9x^2=0\)

\(\Leftrightarrow\left(2x^2-3x+1\right)^2+8x\left(2x^2-3x+1\right)+16x^2-25x^2=0\)

\(\Leftrightarrow\left(2x^2-3x+1+4x\right)^2-25x^2=0\)

\(\Leftrightarrow\left(2x^2+x+1\right)^2-25x^2=0\)

\(\Leftrightarrow\left(2x^2+x+1-5x\right)\left(2x^2+x+1+5x\right)=0\)

\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(2x^2-4x+1\right)=0\\\left(2x^2+6x+1\right)=0\end{matrix}\right.\)

Rồi đến đây tự giải nhé, không phân tích được thì bấm máy tính là ra nha:vv

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

23 tháng 10 2021

\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

10 tháng 11 2021

\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

10 tháng 11 2021

\(a,\Rightarrow\left(x-3\right)\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\\ b,\Rightarrow x^2-x-2x+2=0\\ \Rightarrow\left(x-2\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

a: 49x^2-25=0

=>(7x-5)(7x+5)=0

=>7x-5=0 hoặc 7x+5=0

=>x=5/7 hoặc x=-5/7

b: Đề thiếu vế phải rồi bạn

c: (3x-2)^2-9(x+4)(x-4)=2

=>9x^2-12x+4-9(x^2-16)=2

=>9x^2-12x+4-9x^2+144=2

=>-12x+148=2

=>-12x=-146

=>x=146/12=73/6

d: x^3-6x^2+12x-8=0

=>(x-2)^3=0

=>x-2=0

=>x=2

e: x^3-9x^2+27x-27=0

=>(x-3)^3=0

=>x-3=0

=>x=3

3 tháng 9 2023

a) \(-25+49x^2=0\)

\(\Leftrightarrow49x^2-25=0\)

\(\Leftrightarrow\left(7x\right)^2-5^2=0\)

\(\Leftrightarrow\left(7x-5\right)\left(7x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-5=0\\7x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}7x=5\\7x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{7}\\x=-\dfrac{5}{7}\end{matrix}\right.\)

b) \(16x^2-25\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left[5\left(x-2\right)\right]^2=0\)

\(\Leftrightarrow\left(4x-5x+10\right)\left(4x+5x-10\right)=0\)

\(\Leftrightarrow\left(10-x\right)\left(9x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\9x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{10}{9}\end{matrix}\right.\)

c) \(\left(3x-2\right)^2-9\left(x+4\right)\left(x+4\right)=2\)

\(\Leftrightarrow9x^2-12x+4-9\left(x^2+8x+16\right)=2\)

\(\Leftrightarrow9x^2-12x+4-9x^2-72x-144=2\)

\(\Leftrightarrow-84x-140=2\)

\(\Leftrightarrow-84x=142\)

\(\Leftrightarrow x=-\dfrac{142}{84}\)

\(\Leftrightarrow x=-\dfrac{71}{42}\)

d) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-2^3=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

e) \(-27+27x-9x^2+x^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27=0\)

\(\Leftrightarrow\left(x-3\right)^3=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

2 tháng 10 2021

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bài 2: 

a: Ta có: \(x^2+12x+36=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(16x^2-8x+1=0\)

\(\Leftrightarrow4x-1=0\)

hay \(x=\dfrac{1}{4}\)

Bài 1: 

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)

\(=\left(x+2y+x-2y\right)^2\)

\(=4x^2\)

18 tháng 8 2021

a)(2x-3)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy x=3/2 hoặc x=-5

18 tháng 8 2021

a) \(\left(2x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)

b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)

c) \(5x\left(2x-3\right)-6x+9=0\)

\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)

30 tháng 10 2021

a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)

b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)