K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Đáp án C

15 tháng 3 2019

Đáp án C.

 

Gọi O chân đường cao hạ từ S xuống mặt đáy  ⇒ A C ∩ B D = O .

Dựng  O H ⊥ S N  (H thuộc SN). Gọi M, N lần lượt là trung điểm của AD và BC. Trong (SMN), kẻ  M I // O H  (I thuộc SN).

Em có:  AD//BC⇒d S B , A D = d A D , S B C = d M , S B C .

Em lại có:  S M N ⊥ S B C ⇒ OH ⊥ S B C

Do  O H // M I  nên  MI⊥SBC⇒d M , S B C = M I = 2 O H .

Tam giác SON vuông tại O, đường cao OH nên ta có

1 O H 2 = 1 S O 2 + 1 O N 2 ⇒ O H = a h 4 h 2 + a 2 ⇒ M I = 2 a h 4 h 2 + a 2

 

NV
27 tháng 4 2021

Do S.ABCD là chóp tứ giác đều \(\Rightarrow SH\perp\left(ABCD\right)\Rightarrow SH\perp AC\)

Mà \(AC\perp BD\) (hai đường chéo hình vuông) 

\(\Rightarrow AC\perp\left(SBD\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b. Qua B kẻ đường thẳng song song AC cắt DC kéo dài tại E

\(\Rightarrow AC||\left(SBE\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SBE\right)\right)=d\left(H;\left(SBE\right)\right)\)

\(\left\{{}\begin{matrix}AC\perp\left(SBD\right)\\AC||BE\end{matrix}\right.\) \(\Rightarrow BE\perp\left(SBD\right)\)

Trong tam giác vuông SBH, từ H kẻ \(HK\perp SB\Rightarrow HK\perp\left(SBE\right)\)

\(\Rightarrow HK=d\left(H;SBE\right)\)

\(BD=a\sqrt{2}\Rightarrow BH=\dfrac{BD}{2}=\dfrac{a\sqrt{2}}{2}\)

\(SH=\sqrt{SB^2-BH^2}=\dfrac{a\sqrt{3}}{2}\)

ÁP dụng hệ thức lượng:

\(HK.SB=SH.BH\Rightarrow HK=\dfrac{SH.BH}{SB}=\dfrac{a\sqrt{30}}{10}\)

12 tháng 11 2019

16 tháng 10 2017

Đáp án C

Gọi O là giao điểm của AC và BD. Ta có AC vuông góc với mặt phẳng (SBD) tại O. Kẻ OH vuông góc với SB, thì OH là khoảng cách cần tìm. Tam giác SOB vuông cân tại O, nên   O H = S B 2 = a 2 .

10 tháng 11 2019

28 tháng 2 2019

5 tháng 1 2020

Đáp án B.

22 tháng 9 2023

a) Kẻ \(OH \bot SB\left( {H \in SB} \right)\)

\(S.ABC{\rm{D}}\) là chóp tứ giác đều \( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\( \Rightarrow AC \bot \left( {SB{\rm{D}}} \right) \Rightarrow AC \bot OH\)

Mà \(OH \bot SB\)

\( \Rightarrow d\left( {AC,SB} \right) = OH\)

\(B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = a\sqrt 2  \Rightarrow BO = \frac{1}{2}B{\rm{D}} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông tại \(O \Rightarrow SO = \sqrt {S{B^2} - B{O^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông cân tại \(O\) có đường cao \(OH\)

\( \Rightarrow d\left( {AC,SB} \right) = OH = \frac{1}{2}SB = \frac{a}{2}\)

b) \({S_{ABC{\rm{D}}}} = A{B^2} = {a^2}\)

\({V_{S.ABC{\rm{D}}}} = \frac{1}{3}{S_{ABC{\rm{D}}}}.SO = \frac{{{a^3}\sqrt 2 }}{6}\)

17 tháng 10 2019