Tìm n thuộc Z để phân số sau là phân số tối giản
\(\frac{18n+3}{27n+7}\)
mọi người trình bày cụ thể giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (12n + 5;18n + 7) = d
=> \(\hept{\begin{cases}12n+5⋮d\\18n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(12n+5\right)⋮d\\2\left(18n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}36n+15⋮d\\36n+14⋮d\end{cases}}}\)
=> 36n + 15n - (36n + 14) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
Vì \(n\inℤ\Rightarrow\hept{\begin{cases}12n+5\inℤ\\18n+7\inℤ\end{cases}\Rightarrow d\inℤ}\)
Khi đó d \(\in\left\{1;-1\right\}\)
=> 12n + 5 ; 18n + 7 là 2 số nguyên tố cùng nhau
=> \(\frac{12n+5}{18n+7}\)là phân số tối giản
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
A= \(\frac{n+3}{n-2}\)=\(\frac{\left(n-2\right)+5}{n-2}\)=1+\(\frac{5}{n-2}\)
Để A là phân số tối giản khi n-2 \(\pm\) Ư(5)
Vậy n-2\(\pm\)5k
<=> n\(\pm\)5h+2
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
1