Từ điểm M nằm ngoài mặt cầu S O ; R có thể kẻ được bao nhiêu tiếp tuyến với mặt cầu ?
A. Vô số
B. 0
C. 1
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
(h.12) Gọi ( α ) là mặt phẳng chứa đường thẳng MO
Ta có: ( α ) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn (C) có tâm O, bán kính R.
Trong mặt phẳng ( α ), từ điểm M nằm ngoài (C) ta luôn kẻ được hai tiếp tuyến M T 1 , M T 2 với đường tròn (C). Đây cũng là hai tiếp tuyến với mặt cầu S(O;R).
Nhận xét: Do có vô số mặt phẳng ( α ) chứa đường thẳng MO. Những mặt phẳng này cắt mặt cầu S(O;R) theo các giao tuyến là đường tròn khác nhau nên cũng có vô số tiếp tuyến với mặt cầu được kẻ từ điểm M nằm ngoài mặt cầu.
Hai đường thẳng MAB và MCD giao nhau xác định một mặt phẳng (P). Mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn (C), ngoại tiếp tứ giác phẳng ABCD.
Xét ΔMAC và ΔMDB có:
⇒ MA.MB = MC.MD (đpcm).
\(S=4\pi R^2=36\pi\Rightarrow R=3\)
\(\Rightarrow OB=R=3\)
Áp dụng định lý Pitago cho tam giác OAB:
\(AB=\sqrt{OA^2-OB^2}=\sqrt{5^2-3^2}=4\)
a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).
Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.
Vì vậy: => MA.MB = MC.MD.
b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:
MO2= MI2 = OI2 và OA2 = OI2 + IA2
Hạ IH vuông góc AB, ta có H là trung điểm của AB.
Ta có MA = MH - HA; MB = MH + HB = MH + HA.
Nên MA.MB =
MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)
= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)
= MO2 – OẢ2
= d2 – r2
Vậy MA.MB = d2 – r2
Chọn đáp án A
Từ một điểm M nằm ngoài mặt cầu S O ; R có thể kẻ được vô số tiếp tuyến với mặt cầu.