K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

12 tháng 11 2017

Các tam giác trên có hai loại:

+ Loại 1: Gồm các tam giác có 2 đỉnh điểm nằm trên a, 1 đỉnh nằm trên b. Số tam giác thuộc loại này là  

+ Loại 2: Gồm các tam giác có 1 đỉnh điểm nằm trên a, 2 đỉnh nằm trên b. Số tam giác thuộc loại này là 

Vậy theo quy tắc cộng, số tam giác cân tìm là:  120 + 168 = 288.

Chọn C.

20 tháng 5 2017

Mỗi câu sau đây là đúng hay sai ?

a) Có một và chỉ một đường thẳng đi qua hai điểm (phân biệt) cho trước

Đúng

b) Có đúng ba đường thẳng đi qua ba điểm (phân biệt) cho trước

Sai

c) Có đúng 6 đường thẳng đi qua bốn điểm (phân biệt) cho trước

Sai

d) Hai đường thẳng phân biệt thì song song với nhau

Sai

e) Hai đường thẳng không cắt nhau thì song song với nhau

Sai

f) Hai đường thẳng không song song thì cắt nhau

Sai

g) Hai đường thẳng không phân biệt thì trùng nhau

Đúng

h) Ba đường thẳng phân biệt, từng đôi một cắt nhau thì có đúng 3 giao điểm (phân biệt)

Sai

6 tháng 8 2017

Đáp án D

Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là :  C 11 3   =   165

Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :

-   Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b

-   Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b

Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là :  C 6 2 C 5 1   +   C 6 1 C 5 2   =   135

Vậy xác suất cần tìm là 135 165   =   9 11 . => Chọn đáp án D.

5 tháng 10 2019

Đáp án D

Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là :  C 11 3 = 165

Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :

-        Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b

-        Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b

Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là :  C 6 2 C 5 1 + C 6 1 C 5 2 = 135

18 tháng 9 2023

Ta có: +) a // b, b // c nên a // c ( Hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau)

+) m \( \bot \) a; n \( \bot \)a nên m // n (Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

Theo định lý “Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia, ta có:

+) a // b; a \( \bot \)n nên b \( \bot \)n

+) a // b; a \( \bot \)m nên b \( \bot \)m

+) a // c; a \( \bot \)n nên c \( \bot \)n

+) a // c; a \( \bot \)m nên c \( \bot \)m

Vậy các cặp đường thẳng song song là: a // b ; a // c ; b // c; m // n

Các cặp đường thẳng vuôn góc là: b \( \bot \)n; b \( \bot \)m; c \( \bot \)n; c \( \bot \)m; a \( \bot \)n; a \( \bot \)m

21 tháng 1 2022

Mọi người giúp mik vs😭😭😭

29 tháng 2 2016

học lớp 7 lớp 6 quên rồi

3 tháng 3 2016

Vậy cx nhảy vô trả lời. Tui L6 cx có thể lm mấy bài L5 trên mạng mà !!!

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Cách 1:

TH1: 2 điểm thuộc a và 1 điểm thuộc b

Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)

TH2: 2 điểm thuộc b và 1 điểm thuộc a

Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)

Vậy có tất cả 12 + 18 = 30 tam giác.

Cách 2:

Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)

Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)

Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)

Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)

Vậy số tam giác có thể có là : 30 (tam giác)