K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

27 tháng 10 2018

Đáp án B

Gọi H là trung diểm của BC suy ra cos A C B ^ = sin H A B ^ = 1 3 ⇒ cos H A B ^ = 2 2 3  

Mà sin B A C ^ = 2 sin H A B ^ . cos H A B ^ = 4 2 9  nên theo định lí Sin, ta có R ∆ A B C = B C 2 s i n B A C ^ = 9 4  

Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là R = R 2 ∆ A B C + S A 2 4 = a 97 4  

Vậy diện tích mặt cầu cần tính là S = 4 πR 2 = 4 π a 97 4 2 = 97 πa 2 4

25 tháng 2 2017

Đáp án C

12 tháng 1 2017

17 tháng 8 2019

2 tháng 5 2019

Chọn C.

Gọi H, I lần lượt là trung điểm của BC, AC.

Tam giác SAC vuông cân tại S

Tam giác ABC vuông tại  A => IA= IB = IC (1).

Lại có: 

Mà HI là đường trung bình của tam giác ABC  

Do đó: I là tâm mặt cầu ngoại tiếp hình chóp S.ABC

Vậy diện tích mặt cầu là

9 tháng 2 2018

Đáp án D

Gọi H là trung điểm của BC ta có:  A H ⊥ B C     Do  A B C ⊥ S B C ⇒ A H ⊥ S B C

Đặt  A H = x ⇒ H C = a 2 − x 2 = H B = S H ⇒ Δ S B C

 vuông tại S (do đường trùng tuyến bằng  cạnh đối diện). Suy ra B C = S B 2 + S C 2 = a 3 .  Gọi O là tâm đường tròn ngoại tiếp  Δ A B C ⇒ O ∈ A H ⇒ O A = O B = O C = OS   .Ta có:  R = R A B C = A C 2 sin B ,    trong đó   sin B = A H A B = A   S 2 − S H 2 A B = 1 2 Do đó  R C = a ⇒ S x q = 4 π R 2 C = 4 π a 2 .

1 tháng 9 2017

Gọi O, I lần lượt là trung điểm của AC, SC.

Ta có:

 

∆ A B C  vuông cân tại B  O là tâm đường tròn ngoại tiếp và A C = A B 2 = a 2 .

∆ S A C  vuông tại A, I là trung điểm của S C ⇒ I S = I C = I A 2  

Từ (1), (2) suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABC, bán kính

Chọn: A

23 tháng 5 2019

Đáp án A

 

28 tháng 6 2019