K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

Rút gọn biểu thức ta có:

Giải bài 52 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8

Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.

20 tháng 9 2019

~~~Học Tốt~~~

20 tháng 9 2019

Rút gọn biểu thức ta có :

 \(\left(a-\frac{x^2+a^2}{x+a}\right).\left(\frac{2a}{x}-\frac{4a}{x-a}\right)\)

\(=\frac{a\left(x+a\right)-\left(x^2+a^2\right)}{x+}.\frac{2a\left(x-a\right)-4a.x}{x\left(x-a\right)}\)

\(=\frac{ax+a^2-x^2-a^2}{x+a}.\frac{2ax-2a^2-4ax}{x\left(x-a\right)}\)

\(=\frac{ax-x^2}{x+a}.\frac{-2a^2-2ax}{x\left(x-a\right)}\)

\(=\frac{-\left(x^2-ax\right)}{\left(x+a\right)}.\frac{-\left(2a^2+2ax\right)}{x\left(x-a\right)}\)

\(=\frac{\left(x^2-ax\right).\left(2a^2+2ax\right)}{x\left(x+a\right)\left(x-a\right)}\)

\(=\frac{x\left(x-a\right).2a\left(a+x\right)}{x\left(x+a\right)\left(x-a\right)}\)

\(=2a\)

Với a là một số nguyên thì giá trị biểu thức bằng 2a là một số chẵn.

Chúc bạn học tốt !!!

1 tháng 6 2018

Rút gọn được P = 4a. Do đó P là một số chẵn (vì a nguyên).

21 tháng 10 2021

\(A=x^2-x+5=2^2-2+5=2+5=7\)

\(B=\left(x-1\right)\left(x+2\right)-x\left(x-2\right)-3x\)

\(=x^2+x-2-x^2+2x-3x\)

\(=-2\)

\(=\dfrac{ax-a^2-x^2-a^2}{x+a}\cdot\dfrac{2a\left(x-a\right)-4ax}{x\left(x-a\right)}\)

\(=\dfrac{x\left(a-x\right)}{x+a}\cdot\dfrac{2a\left(x-a-2x\right)}{x\left(x-a\right)}\)

\(=-2a⋮2\)

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

11 tháng 12 2021

1: Thay x=16 vào A, ta được:

\(A=\dfrac{6-2\cdot4}{4-5}=\dfrac{-2}{-1}=2\)

22 tháng 4 2022

*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.

\(P\left(0\right)=c\) nguyên.

\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)

\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)

-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.

\(\Rightarrow\)đpcm.

*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.

-Từ đây suy ra cả 3 số a,b,c đều nguyên.

\(\Rightarrow\)đpcm.

 

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời