Cho m , n nguyên thỏa mãn : \(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}.\)Tìm GTLN của P = m . n .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)
=> m=5;n=1;p=2
Ta có \(\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Vì m là số nguyên nên \(\frac{n^2+n+1}{n+1}\)
nguyên
=> 1 chia hết cho (n+1)
=> \(n+1\in\left\{1,-1\right\}=>n\in\left\{0,-2\right\}\)
Với n = 0 thì: \(m=\frac{0+0+1}{0+1}=1\)
Với n = -2 thì: \(m=\frac{4-2+1}{-2+1}=-3\)
Vậy, các cặp (m;n) thảo mãn là: (0;1),(-2;-3)
Nếu đúng nhớ tk nhé
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)