Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)
=> m=5;n=1;p=2
Theo đầu bài ta có:
\(m=\frac{n^2+n+1}{n+1}\)
\(m=\frac{n^2}{n+1}+\frac{n+1}{n+1}\)
\(m=\frac{n^2}{n+1}+1\)
Để m và n là số nguyên thì biểu thức n2 : ( n + 1 ) phải là số nguyên.
n2 + n + 1 = ( m2 + m - 3 ) ( m2 - m + 5 ) = m4 + m2 + 8m - 15
\(\Rightarrow\)n2 + n - ( m4 + m2 + 8m - 16 ) = 0 ( 1 )
để phương trình ( 1 ) có nghiệm nguyên dương thì :
\(\Delta=1+4\left(m^4+m^2+8m-16\right)=4m^4+4m^2+32m-63\)phải là số chính phương
Ta có : \(\Delta=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)với m thuộc Z+
Mặt khác : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)\)
do đó : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\)với m > 2
\(\Rightarrow\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)với m > 2
Nên ( 1 ) có nghiệm nguyên dương khi m = 1 hoặc m = 2
+) m = 1 thì \(n^2+n+16=0\) vô nghiệm
+) m = 2 thì \(n^2=n-20=0\Rightarrow\orbr{\begin{cases}n=4\left(tm\right)\\n=-5\left(loai\right)\end{cases}}\)
Thử lại m = 2 và n = 4 thỏa mãn điều kiện bài toán
Vậy m = 2 và n = 4
P/s : bài " gắt "
Ta có \(\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Vì m là số nguyên nên \(\frac{n^2+n+1}{n+1}\)
nguyên
=> 1 chia hết cho (n+1)
=> \(n+1\in\left\{1,-1\right\}=>n\in\left\{0,-2\right\}\)
Với n = 0 thì: \(m=\frac{0+0+1}{0+1}=1\)
Với n = -2 thì: \(m=\frac{4-2+1}{-2+1}=-3\)
Vậy, các cặp (m;n) thảo mãn là: (0;1),(-2;-3)
Nếu đúng nhớ tk nhé