K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

xin loi ban minh cung muon giai giup ban lam nhung minh moi hoc lop 5 thoi

27 tháng 12 2015

mình giống bạn sakura - sorry mnky1.gif~c200 nha

15 tháng 10 2021

Ai giúp gấp nhé:D

 

15 tháng 10 2021

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

27 tháng 12 2015

giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)

mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)

do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)

tick 

NV
16 tháng 1 2024

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

6 tháng 2 2022

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

2 tháng 3 2022

 mik chưa hiểu dòng thứ 2 bạn giải thích rõ hơn được ko

 

7 tháng 12 2015

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

7 tháng 12 2015

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

11 tháng 7 2023

\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).

Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)