tam giác ABC có diện tích là 15 cm2 . AB=9cm,AC=12cm .kéo dài AB về phía B và AC về phía C lấy M,N sao chho BM=CN=3cm . Nối M với N . Diện tích tam giác AMN là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg ABC và tg BCM có chung đường cao từ C->AM nên
\(\frac{S_{BCM}}{S_{ABC}}=\frac{BM}{AB}=\frac{3}{9}=\frac{1}{3}\Rightarrow S_{BCM}=\frac{S_{ABC}}{3}\)
\(\Rightarrow S_{ACM}=S_{ABC}+S_{BCM}=S_{ABC}+\frac{S_{ABC}}{3}=\frac{4xS_{ABC}}{3}\)
Xét tg ACM và tg CMN có chung đường cao từ M->AN nên
\(\frac{S_{CMN}}{S_{ACM}}=\frac{CN}{AC}=\frac{3}{12}=\frac{1}{4}\Rightarrow S_{CMN}=\frac{S_{ACM}}{4}=\frac{\frac{4xS_{ABC}}{3}}{4}=\frac{S_{ABC}}{3}\)
\(\Rightarrow S_{AMN}=S_{ABC}+S_{BCM}+S_{CMN}=S_{ABC}+\frac{S_{ABC}}{3}+\frac{S_{ABC}}{3}=\frac{5xS_{ABC}}{3}=\frac{5x15}{3}=25cm^2\)
Đoạn AM dài:
9 + 3 = 12 (cm)
Đoạn AN dài:
12 + 3 = 15 (cm)
Diện tích hình tam giác AMN là:
15 x 12 : 2 = 90 (cm2)
Đáp số: 90 cm2
Không chắc đâu nha
\(AM=AB+BM=13\left(cm\right)\)
\(AN=AC+CN=16\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\Rightarrow sinA=\dfrac{2S_{ABC}}{AB.AC}=\dfrac{3}{4}\)
\(\Rightarrow S_{AMN}=\dfrac{1}{2}AM.AN.sinA=\dfrac{1}{2}.13.16.\dfrac{3}{4}=...\)
03/08/1998 lúc 14:27
đã quá lâu ko cần giải(03/08/2015 lúc 14:27)
1/6/1998 lúc 21:51
Bài làm :
a,Ta thấy tam giác ABN và tam giác BMN có chung chiều cao
Đáy AB gấp 4 lần đáy BM
Từ trên ta có thể kết luận rằng : Tam giác ABN gấp 4 lần Tam giác BMN
b, Chiều cao của tam giác BNC bằng chiều cao của tam giác ABC
Chiều cao của tam giác BNC là : 12 x 2 : 8 = 3 cm
Diện tích tam giác BNC là : 2 x 3 : 2 = 3 cm2
c, Ta thấy tam giác BNC và tam giác BMN có chiều cao và đáy bằng nhau
tam giác BMN có Diện tích = tam giác BNC = 3 cm2
Diện tích tứ giác BCMN là : 3 + 3 = 6 cm2
d, tam giác AMN có chiều cao bằng tam giác ABC = 3 cm ( có 2 cách )
Đáy AM là : 8 + 2 = 10 cm
Diện tích tam giác AMN là : 3 x 10 : 2 = 15 cm2