Giải các bất phương trình mũ sau: 3 x 3 x - 2 < 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2-2x< 3+9\)
\(\Leftrightarrow-2x< 12\)
\(\Leftrightarrow x>-6\)
Vậy tập nghiệm của BPT (1) là \(S=\left\{x\in R|x>-6\right\}\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(x^2-2x+3\left|x-1\right|< 3\)
\(-3< x-1< 3\)
\(-2< x< 4\)
\(x\in\left\{-1;0;1;2;3\right\}\)
Điều kiện \(x\ne-2\)
+ Trường hợp \(x+2>0\Leftrightarrow x>-2\) Ta có
BPT(Bất phương trình) \(\Leftrightarrow\left(3-x\right)\left(x+2\right)<6\Leftrightarrow x\left(x-1\right)>0\Leftrightarrow x<0\) hoặc \(x>1\)
So sánh với đk \(x>-2\) => -2<x<0 hoặc x>1
+ Trường hợp x+2<0 <=> x<-2 ta có
BPT \(\Leftrightarrow\left(3-x\right)\left(x+2\right)>6\Leftrightarrow x\left(x-1\right)<0\Leftrightarrow\) 0<x<1
So sánh với điều kiện x<-2 => BPT vô nghiệm
Lết luận -2<x<0 hoặc x>1