Tìm các số nguyên a sao cho:
(a^2-1)(a^2-4)(a^2-7)(a^2-10) < 0
Giải gấp mình cho đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2-1>a2-4>a2-7>a2-10
biểu thức A=(a2-1)(a2-4)(a2-7)(a2-10) là tích 4 số <0 nên phải có 1 số<0 hoặc 3 số <0
TH1. a2-10 <0 SUY RA A=0,1,2,3,-1,-2,-3
TH2.a2-10<a2-7<a2-4<0 SUY RA A=0,1,-1
Có : tích của bốn số a^2 - 10, a^2 - 7, a^2 -1, a^2 - 4 đều là số âm nên phải có một hoặc 3 số âm.
Ta có : a^2 - 10 < a^2 - 7< a^2 - 4 < a^2 -1. nên ta có 2 trường hợp :
+ Có một số âm, ba số dương :
a^2 - 10 < 0 < a^2 - 7 => 7 < a^2 < 10 => a^2 = 9 => a = 3 hoặc -3
+ Có ba số âm, một số dương :
a^2 - 4 < 0 < a^2 - 1 => 1 < a^2 < 4 . vì a thuộc Z nên ko tồn tại a
Vậy a = 3 hoặc -3
a.
\(A=B\)
\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\);ĐK:\(x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4+16=0\)
\(\Leftrightarrow8x+16=0\)
\(\Leftrightarrow8\left(x+2\right)=0\)
\(\Leftrightarrow x=-2\left(ktm\right)\)
Vậy không có giá trị x thỏa mãn A=B
b.
\(A:B=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)
\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{16}>0\)
\(\Leftrightarrow\dfrac{x}{2}>0\)
\(\Leftrightarrow x>0\)
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
a là số nguyên tố
Với a=3 ta có: a+2=3+2=5, a+10=3+10=13, a+14=3+14=17 là các số nguyên tố (TM).
Với a\(\ne\)3, a có dạng 3k+1 và 3k+2 (k lớn hơn 1)
Th1: a=3k+1\(\Rightarrow\)a+2=3k+1+2=3k+3\(⋮\)3 (loại)
Th 2:a=3k+2\(\Rightarrow\)a+10=3k+2+10=3k+12\(⋮\)3 (loại)
Vậy .......................